ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvprod Unicode version

Theorem cbvprod 11550
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprod.1  |-  ( j  =  k  ->  B  =  C )
cbvprod.2  |-  F/_ k A
cbvprod.3  |-  F/_ j A
cbvprod.4  |-  F/_ k B
cbvprod.5  |-  F/_ j C
Assertion
Ref Expression
cbvprod  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Distinct variable group:    j, k
Allowed substitution hints:    A( j, k)    B( j, k)    C( j, k)

Proof of Theorem cbvprod
Dummy variables  f  m  n  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvprod.2 . . . . . . . . . . . . . . 15  |-  F/_ k A
21nfcri 2313 . . . . . . . . . . . . . 14  |-  F/ k  j  e.  A
3 cbvprod.4 . . . . . . . . . . . . . 14  |-  F/_ k B
4 nfcv 2319 . . . . . . . . . . . . . 14  |-  F/_ k
1
52, 3, 4nfif 3562 . . . . . . . . . . . . 13  |-  F/_ k if ( j  e.  A ,  B ,  1 )
6 cbvprod.3 . . . . . . . . . . . . . . 15  |-  F/_ j A
76nfcri 2313 . . . . . . . . . . . . . 14  |-  F/ j  k  e.  A
8 cbvprod.5 . . . . . . . . . . . . . 14  |-  F/_ j C
9 nfcv 2319 . . . . . . . . . . . . . 14  |-  F/_ j
1
107, 8, 9nfif 3562 . . . . . . . . . . . . 13  |-  F/_ j if ( k  e.  A ,  C ,  1 )
11 eleq1w 2238 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
12 cbvprod.1 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  B  =  C )
1311, 12ifbieq1d 3556 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  if ( j  e.  A ,  B ,  1 )  =  if ( k  e.  A ,  C ,  1 ) )
145, 10, 13cbvmpt 4095 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )
15 seqeq3 10436 . . . . . . . . . . . 12  |-  ( ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )  ->  seq n
(  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  seq n
(  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  =  seq n (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
1716breq1i 4007 . . . . . . . . . 10  |-  (  seq n (  x.  , 
( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y  <->  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )
1817anbi2i 457 . . . . . . . . 9  |-  ( ( y #  0  /\  seq n (  x.  , 
( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  <-> 
( y #  0  /\ 
seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
1918exbii 1605 . . . . . . . 8  |-  ( E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
2019rexbii 2484 . . . . . . 7  |-  ( E. n  e.  ( ZZ>= `  m ) E. y
( y #  0  /\ 
seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  <->  E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y ) )
21 seqeq3 10436 . . . . . . . . 9  |-  ( ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) )  ->  seq m
(  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) ) )
2214, 21ax-mp 5 . . . . . . . 8  |-  seq m
(  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  =  seq m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )
2322breq1i 4007 . . . . . . 7  |-  (  seq m (  x.  , 
( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq m
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x )
2420, 23anbi12i 460 . . . . . 6  |-  ( ( E. n  e.  (
ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )
2524anbi2i 457 . . . . 5  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
2625rexbii 2484 . . . 4  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  <->  E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. s  e.  (
ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) ) )
273, 8, 12cbvcsbw 3061 . . . . . . . . . . . 12  |-  [_ (
f `  n )  /  j ]_ B  =  [_ ( f `  n )  /  k ]_ C
28 ifeq1 3537 . . . . . . . . . . . 12  |-  ( [_ ( f `  n
)  /  j ]_ B  =  [_ ( f `
 n )  / 
k ]_ C  ->  if ( n  <_  m , 
[_ ( f `  n )  /  j ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
2927, 28ax-mp 5 . . . . . . . . . . 11  |-  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  1 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 )
3029mpteq2i 4087 . . . . . . . . . 10  |-  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )
31 seqeq3 10436 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) )  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) )
3230, 31ax-mp 5 . . . . . . . . 9  |-  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) )  =  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) )
3332fveq1i 5512 . . . . . . . 8  |-  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
)
3433eqeq2i 2188 . . . . . . 7  |-  ( x  =  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
)  <->  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) )
3534anbi2i 457 . . . . . 6  |-  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) )
3635exbii 1605 . . . . 5  |-  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  1 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  1 ) ) ) `  m
) ) )
3736rexbii 2484 . . . 4  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  j ]_ B ,  1 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) )
3826, 37orbi12i 764 . . 3  |-  ( ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. s  e.  (
ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
3938iotabii 5196 . 2  |-  ( iota
x ( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
) ) ) )  =  ( iota x
( E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
40 df-proddc 11543 . 2  |-  prod_ j  e.  A  B  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( j  e.  ZZ  |->  if ( j  e.  A ,  B ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  j ]_ B ,  1 ) ) ) `  m
) ) ) )
41 df-proddc 11543 . 2  |-  prod_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. s  e.  ( ZZ>= `  m )DECID  s  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  1 ) ) )  ~~>  x ) )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ C ,  1 ) ) ) `  m
) ) ) )
4239, 40, 413eqtr4i 2208 1  |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353   E.wex 1492    e. wcel 2148   F/_wnfc 2306   A.wral 2455   E.wrex 2456   [_csb 3057    C_ wss 3129   ifcif 3534   class class class wbr 4000    |-> cmpt 4061   iotacio 5172   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869   0cc0 7802   1c1 7803    x. cmul 7807    <_ cle 7983   # cap 8528   NNcn 8908   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431    ~~> cli 11270   prod_cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-cnv 4631  df-dm 4633  df-rn 4634  df-res 4635  df-iota 5174  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-recs 6300  df-frec 6386  df-seqfrec 10432  df-proddc 11543
This theorem is referenced by:  cbvprodv  11551  cbvprodi  11552
  Copyright terms: Public domain W3C validator