Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvprod | Unicode version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprod.1 | |
cbvprod.2 | |
cbvprod.3 | |
cbvprod.4 | |
cbvprod.5 |
Ref | Expression |
---|---|
cbvprod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprod.2 | . . . . . . . . . . . . . . 15 | |
2 | 1 | nfcri 2306 | . . . . . . . . . . . . . 14 |
3 | cbvprod.4 | . . . . . . . . . . . . . 14 | |
4 | nfcv 2312 | . . . . . . . . . . . . . 14 | |
5 | 2, 3, 4 | nfif 3553 | . . . . . . . . . . . . 13 |
6 | cbvprod.3 | . . . . . . . . . . . . . . 15 | |
7 | 6 | nfcri 2306 | . . . . . . . . . . . . . 14 |
8 | cbvprod.5 | . . . . . . . . . . . . . 14 | |
9 | nfcv 2312 | . . . . . . . . . . . . . 14 | |
10 | 7, 8, 9 | nfif 3553 | . . . . . . . . . . . . 13 |
11 | eleq1w 2231 | . . . . . . . . . . . . . 14 | |
12 | cbvprod.1 | . . . . . . . . . . . . . 14 | |
13 | 11, 12 | ifbieq1d 3547 | . . . . . . . . . . . . 13 |
14 | 5, 10, 13 | cbvmpt 4082 | . . . . . . . . . . . 12 |
15 | seqeq3 10399 | . . . . . . . . . . . 12 | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 |
17 | 16 | breq1i 3994 | . . . . . . . . . 10 |
18 | 17 | anbi2i 454 | . . . . . . . . 9 # # |
19 | 18 | exbii 1598 | . . . . . . . 8 # # |
20 | 19 | rexbii 2477 | . . . . . . 7 # # |
21 | seqeq3 10399 | . . . . . . . . 9 | |
22 | 14, 21 | ax-mp 5 | . . . . . . . 8 |
23 | 22 | breq1i 3994 | . . . . . . 7 |
24 | 20, 23 | anbi12i 457 | . . . . . 6 # # |
25 | 24 | anbi2i 454 | . . . . 5 DECID # DECID # |
26 | 25 | rexbii 2477 | . . . 4 DECID # DECID # |
27 | 3, 8, 12 | cbvcsbw 3053 | . . . . . . . . . . . 12 |
28 | ifeq1 3528 | . . . . . . . . . . . 12 | |
29 | 27, 28 | ax-mp 5 | . . . . . . . . . . 11 |
30 | 29 | mpteq2i 4074 | . . . . . . . . . 10 |
31 | seqeq3 10399 | . . . . . . . . . 10 | |
32 | 30, 31 | ax-mp 5 | . . . . . . . . 9 |
33 | 32 | fveq1i 5495 | . . . . . . . 8 |
34 | 33 | eqeq2i 2181 | . . . . . . 7 |
35 | 34 | anbi2i 454 | . . . . . 6 |
36 | 35 | exbii 1598 | . . . . 5 |
37 | 36 | rexbii 2477 | . . . 4 |
38 | 26, 37 | orbi12i 759 | . . 3 DECID # DECID # |
39 | 38 | iotabii 5180 | . 2 DECID # DECID # |
40 | df-proddc 11507 | . 2 DECID # | |
41 | df-proddc 11507 | . 2 DECID # | |
42 | 39, 40, 41 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wnfc 2299 wral 2448 wrex 2449 csb 3049 wss 3121 cif 3525 class class class wbr 3987 cmpt 4048 cio 5156 wf1o 5195 cfv 5196 (class class class)co 5851 cc0 7767 c1 7768 cmul 7772 cle 7948 # cap 8493 cn 8871 cz 9205 cuz 9480 cfz 9958 cseq 10394 cli 11234 cprod 11506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-if 3526 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-cnv 4617 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-recs 6282 df-frec 6368 df-seqfrec 10395 df-proddc 11507 |
This theorem is referenced by: cbvprodv 11515 cbvprodi 11516 |
Copyright terms: Public domain | W3C validator |