Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvprod | Unicode version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprod.1 | |
cbvprod.2 | |
cbvprod.3 | |
cbvprod.4 | |
cbvprod.5 |
Ref | Expression |
---|---|
cbvprod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprod.2 | . . . . . . . . . . . . . . 15 | |
2 | 1 | nfcri 2306 | . . . . . . . . . . . . . 14 |
3 | cbvprod.4 | . . . . . . . . . . . . . 14 | |
4 | nfcv 2312 | . . . . . . . . . . . . . 14 | |
5 | 2, 3, 4 | nfif 3554 | . . . . . . . . . . . . 13 |
6 | cbvprod.3 | . . . . . . . . . . . . . . 15 | |
7 | 6 | nfcri 2306 | . . . . . . . . . . . . . 14 |
8 | cbvprod.5 | . . . . . . . . . . . . . 14 | |
9 | nfcv 2312 | . . . . . . . . . . . . . 14 | |
10 | 7, 8, 9 | nfif 3554 | . . . . . . . . . . . . 13 |
11 | eleq1w 2231 | . . . . . . . . . . . . . 14 | |
12 | cbvprod.1 | . . . . . . . . . . . . . 14 | |
13 | 11, 12 | ifbieq1d 3548 | . . . . . . . . . . . . 13 |
14 | 5, 10, 13 | cbvmpt 4084 | . . . . . . . . . . . 12 |
15 | seqeq3 10406 | . . . . . . . . . . . 12 | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 |
17 | 16 | breq1i 3996 | . . . . . . . . . 10 |
18 | 17 | anbi2i 454 | . . . . . . . . 9 # # |
19 | 18 | exbii 1598 | . . . . . . . 8 # # |
20 | 19 | rexbii 2477 | . . . . . . 7 # # |
21 | seqeq3 10406 | . . . . . . . . 9 | |
22 | 14, 21 | ax-mp 5 | . . . . . . . 8 |
23 | 22 | breq1i 3996 | . . . . . . 7 |
24 | 20, 23 | anbi12i 457 | . . . . . 6 # # |
25 | 24 | anbi2i 454 | . . . . 5 DECID # DECID # |
26 | 25 | rexbii 2477 | . . . 4 DECID # DECID # |
27 | 3, 8, 12 | cbvcsbw 3053 | . . . . . . . . . . . 12 |
28 | ifeq1 3529 | . . . . . . . . . . . 12 | |
29 | 27, 28 | ax-mp 5 | . . . . . . . . . . 11 |
30 | 29 | mpteq2i 4076 | . . . . . . . . . 10 |
31 | seqeq3 10406 | . . . . . . . . . 10 | |
32 | 30, 31 | ax-mp 5 | . . . . . . . . 9 |
33 | 32 | fveq1i 5497 | . . . . . . . 8 |
34 | 33 | eqeq2i 2181 | . . . . . . 7 |
35 | 34 | anbi2i 454 | . . . . . 6 |
36 | 35 | exbii 1598 | . . . . 5 |
37 | 36 | rexbii 2477 | . . . 4 |
38 | 26, 37 | orbi12i 759 | . . 3 DECID # DECID # |
39 | 38 | iotabii 5182 | . 2 DECID # DECID # |
40 | df-proddc 11514 | . 2 DECID # | |
41 | df-proddc 11514 | . 2 DECID # | |
42 | 39, 40, 41 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wnfc 2299 wral 2448 wrex 2449 csb 3049 wss 3121 cif 3526 class class class wbr 3989 cmpt 4050 cio 5158 wf1o 5197 cfv 5198 (class class class)co 5853 cc0 7774 c1 7775 cmul 7779 cle 7955 # cap 8500 cn 8878 cz 9212 cuz 9487 cfz 9965 cseq 10401 cli 11241 cprod 11513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 df-proddc 11514 |
This theorem is referenced by: cbvprodv 11522 cbvprodi 11523 |
Copyright terms: Public domain | W3C validator |