Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotabidv | Unicode version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 |
Ref | Expression |
---|---|
iotabidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 | |
2 | 1 | alrimiv 1867 | . 2 |
3 | iotabi 5169 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 df-iota 5160 |
This theorem is referenced by: csbiotag 5191 dffv3g 5492 fveq1 5495 fveq2 5496 fvres 5520 csbfv12g 5532 fvco2 5565 riotaeqdv 5810 riotabidv 5811 riotabidva 5825 ovtposg 6238 shftval 10789 sumeq1 11318 sumeq2 11322 zsumdc 11347 isumclim3 11386 isumshft 11453 prodeq1f 11515 prodeq2w 11519 prodeq2 11520 zproddc 11542 pcval 12250 grpidvalg 12627 grpidpropdg 12628 |
Copyright terms: Public domain | W3C validator |