| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotabidv | Unicode version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| iotabidv.1 | 
 | 
| Ref | Expression | 
|---|---|
| iotabidv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iotabidv.1 | 
. . 3
 | |
| 2 | 1 | alrimiv 1888 | 
. 2
 | 
| 3 | iotabi 5228 | 
. 2
 | |
| 4 | 2, 3 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: csbiotag 5251 dffv3g 5554 fveq1 5557 fveq2 5558 fvres 5582 csbfv12g 5596 fvco2 5630 riotaeqdv 5878 riotabidv 5879 riotabidva 5894 ovtposg 6317 shftval 10990 sumeq1 11520 sumeq2 11524 zsumdc 11549 isumclim3 11588 isumshft 11655 prodeq1f 11717 prodeq2w 11721 prodeq2 11722 zproddc 11744 pcval 12465 grpidvalg 13016 grpidpropdg 13017 igsumvalx 13032 gsumpropd 13035 gsumpropd2 13036 gsumress 13038 gsumval2 13040 dfur2g 13518 oppr0g 13637 oppr1g 13638 | 
| Copyright terms: Public domain | W3C validator |