ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabidv Unicode version

Theorem iotabidv 5173
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
Hypothesis
Ref Expression
iotabidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
iotabidv  |-  ( ph  ->  ( iota x ps )  =  ( iota
x ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem iotabidv
StepHypRef Expression
1 iotabidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21alrimiv 1862 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
3 iotabi 5161 . 2  |-  ( A. x ( ps  <->  ch )  ->  ( iota x ps )  =  ( iota
x ch ) )
42, 3syl 14 1  |-  ( ph  ->  ( iota x ps )  =  ( iota
x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   iotacio 5150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-uni 3789  df-iota 5152
This theorem is referenced by:  csbiotag  5180  dffv3g  5481  fveq1  5484  fveq2  5485  fvres  5509  csbfv12g  5521  fvco2  5554  riotaeqdv  5798  riotabidv  5799  riotabidva  5813  ovtposg  6223  shftval  10763  sumeq1  11292  sumeq2  11296  zsumdc  11321  isumclim3  11360  isumshft  11427  prodeq1f  11489  prodeq2w  11493  prodeq2  11494  zproddc  11516  pcval  12224
  Copyright terms: Public domain W3C validator