Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotabidv | Unicode version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 |
Ref | Expression |
---|---|
iotabidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 | |
2 | 1 | alrimiv 1861 | . 2 |
3 | iotabi 5157 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1340 wceq 1342 cio 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-uni 3785 df-iota 5148 |
This theorem is referenced by: csbiotag 5176 dffv3g 5477 fveq1 5480 fveq2 5481 fvres 5505 csbfv12g 5517 fvco2 5550 riotaeqdv 5794 riotabidv 5795 riotabidva 5809 ovtposg 6219 shftval 10757 sumeq1 11286 sumeq2 11290 zsumdc 11315 isumclim3 11354 isumshft 11421 prodeq1f 11483 prodeq2w 11487 prodeq2 11488 zproddc 11510 pcval 12217 |
Copyright terms: Public domain | W3C validator |