Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabidv Unicode version

Theorem iotabidv 5067
 Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
Hypothesis
Ref Expression
iotabidv.1
Assertion
Ref Expression
iotabidv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem iotabidv
StepHypRef Expression
1 iotabidv.1 . . 3
21alrimiv 1828 . 2
3 iotabi 5055 . 2
42, 3syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1312   wceq 1314  cio 5044 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-uni 3703  df-iota 5046 This theorem is referenced by:  csbiotag  5074  dffv3g  5371  fveq1  5374  fveq2  5375  fvres  5399  csbfv12g  5411  fvco2  5444  riotaeqdv  5685  riotabidv  5686  riotabidva  5700  ovtposg  6110  shftval  10490  sumeq1  11016  sumeq2  11020  zsumdc  11045  isumclim3  11084  isumshft  11151
 Copyright terms: Public domain W3C validator