| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabidv | Unicode version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 |
|
| Ref | Expression |
|---|---|
| iotabidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1920 |
. 2
|
| 3 | iotabi 5287 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: csbiotag 5310 dffv3g 5622 fveq1 5625 fveq2 5626 fvres 5650 csbfv12g 5666 fvco2 5702 riotaeqdv 5954 riotabidv 5955 riotabidva 5971 ovtposg 6403 shftval 11331 sumeq1 11861 sumeq2 11865 zsumdc 11890 isumclim3 11929 isumshft 11996 prodeq1f 12058 prodeq2w 12062 prodeq2 12063 zproddc 12085 pcval 12814 grpidvalg 13401 grpidpropdg 13402 igsumvalx 13417 gsumpropd 13420 gsumpropd2 13421 gsumress 13423 gsumval2 13425 dfur2g 13920 oppr0g 14039 oppr1g 14040 |
| Copyright terms: Public domain | W3C validator |