| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabii | GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 5246 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ℩cio 5235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-uni 3853 df-iota 5237 |
| This theorem is referenced by: riotav 5912 cbvsum 11715 cbvprod 11913 |
| Copyright terms: Public domain | W3C validator |