Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotabii | GIF version |
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 5157 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1438 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1342 ℩cio 5146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-uni 3785 df-iota 5148 |
This theorem is referenced by: riotav 5798 cbvsum 11291 cbvprod 11489 |
Copyright terms: Public domain | W3C validator |