ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunssd Unicode version

Theorem iunssd 3962
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iunssd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  C_  C )
Assertion
Ref Expression
iunssd  |-  ( ph  ->  U_ x  e.  A  B  C_  C )
Distinct variable groups:    x, C    ph, x
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem iunssd
StepHypRef Expression
1 iunssd.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  C_  C )
21ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  A  B  C_  C )
3 iunss 3957 . 2  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
42, 3sylibr 134 1  |-  ( ph  ->  U_ x  e.  A  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475    C_ wss 3157   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iun 3918
This theorem is referenced by:  imasaddfnlemg  12957  imasaddflemg  12959
  Copyright terms: Public domain W3C validator