ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunssd GIF version

Theorem iunssd 3958
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iunssd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iunssd (𝜑 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunssd
StepHypRef Expression
1 iunssd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 2567 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iunss 3953 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3sylibr 134 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wral 2472  wss 3153   ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  imasaddfnlemg  12887  imasaddflemg  12889
  Copyright terms: Public domain W3C validator