ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss2 Unicode version

Theorem iunss2 3957
Description: A subclass condition on the members of two indexed classes 
C ( x ) and  D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3866. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Distinct variable groups:    x, y    x, B    y, C    x, D
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 3954 . . 3  |-  ( E. y  e.  B  C  C_  D  ->  C  C_  U_ y  e.  B  D )
21ralimi 2557 . 2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  A. x  e.  A  C  C_  U_ y  e.  B  D )
3 iunss 3953 . 2  |-  ( U_ x  e.  A  C  C_ 
U_ y  e.  B  D 
<-> 
A. x  e.  A  C  C_  U_ y  e.  B  D )
42, 3sylibr 134 1  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2472   E.wrex 2473    C_ wss 3153   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  iunxdif2  3961  rdgss  6427
  Copyright terms: Public domain W3C validator