ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss2 Unicode version

Theorem iunss2 3918
Description: A subclass condition on the members of two indexed classes 
C ( x ) and  D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3827. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Distinct variable groups:    x, y    x, B    y, C    x, D
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 3915 . . 3  |-  ( E. y  e.  B  C  C_  D  ->  C  C_  U_ y  e.  B  D )
21ralimi 2533 . 2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  A. x  e.  A  C  C_  U_ y  e.  B  D )
3 iunss 3914 . 2  |-  ( U_ x  e.  A  C  C_ 
U_ y  e.  B  D 
<-> 
A. x  e.  A  C  C_  U_ y  e.  B  D )
42, 3sylibr 133 1  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2448   E.wrex 2449    C_ wss 3121   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-iun 3875
This theorem is referenced by:  iunxdif2  3921  rdgss  6362
  Copyright terms: Public domain W3C validator