ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunab Unicode version

Theorem iunab 3935
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2319 . . . 4  |-  F/_ y A
2 nfab1 2321 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiunxy 3914 . . 3  |-  F/_ y U_ x  e.  A  { y  |  ph }
4 nfab1 2321 . . 3  |-  F/_ y { y  |  E. x  e.  A  ph }
53, 4cleqf 2344 . 2  |-  ( U_ x  e.  A  {
y  |  ph }  =  { y  |  E. x  e.  A  ph }  <->  A. y ( y  e. 
U_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  E. x  e.  A  ph } ) )
6 abid 2165 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76rexbii 2484 . . 3  |-  ( E. x  e.  A  y  e.  { y  | 
ph }  <->  E. x  e.  A  ph )
8 eliun 3892 . . 3  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  E. x  e.  A  y  e.  { y  |  ph }
)
9 abid 2165 . . 3  |-  ( y  e.  { y  |  E. x  e.  A  ph }  <->  E. x  e.  A  ph )
107, 8, 93bitr4i 212 . 2  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  y  e.  { y  |  E. x  e.  A  ph } )
115, 10mpgbir 1453 1  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   U_ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-iun 3890
This theorem is referenced by:  iunrab  3936  iunid  3944  dfimafn2  5567
  Copyright terms: Public domain W3C validator