ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunab Unicode version

Theorem iunab 3919
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2312 . . . 4  |-  F/_ y A
2 nfab1 2314 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiunxy 3899 . . 3  |-  F/_ y U_ x  e.  A  { y  |  ph }
4 nfab1 2314 . . 3  |-  F/_ y { y  |  E. x  e.  A  ph }
53, 4cleqf 2337 . 2  |-  ( U_ x  e.  A  {
y  |  ph }  =  { y  |  E. x  e.  A  ph }  <->  A. y ( y  e. 
U_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  E. x  e.  A  ph } ) )
6 abid 2158 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76rexbii 2477 . . 3  |-  ( E. x  e.  A  y  e.  { y  | 
ph }  <->  E. x  e.  A  ph )
8 eliun 3877 . . 3  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  E. x  e.  A  y  e.  { y  |  ph }
)
9 abid 2158 . . 3  |-  ( y  e.  { y  |  E. x  e.  A  ph }  <->  E. x  e.  A  ph )
107, 8, 93bitr4i 211 . 2  |-  ( y  e.  U_ x  e.  A  { y  | 
ph }  <->  y  e.  { y  |  E. x  e.  A  ph } )
115, 10mpgbir 1446 1  |-  U_ x  e.  A  { y  |  ph }  =  {
y  |  E. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   E.wrex 2449   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-iun 3875
This theorem is referenced by:  iunrab  3920  iunid  3928  dfimafn2  5546
  Copyright terms: Public domain W3C validator