ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasaddflemg Unicode version

Theorem imasaddflemg 13148
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f  |-  ( ph  ->  F : V -onto-> B
)
imasaddf.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
imasaddflem.a  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
imasaddfnlemg.v  |-  ( ph  ->  V  e.  W )
imasaddfnlemg.x  |-  ( ph  ->  .x.  e.  C )
imasaddflem.c  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
Assertion
Ref Expression
imasaddflemg  |-  ( ph  -> 
.xb  : ( B  X.  B ) --> B )
Distinct variable groups:    q, p, B   
a, b, p, q, V    .x. , p, q    F, a, b, p, q    ph, a,
b, p, q    .xb , a,
b, p, q
Allowed substitution hints:    B( a, b)    C( q, p, a, b)    .x. ( a, b)    W( q, p, a, b)

Proof of Theorem imasaddflemg
StepHypRef Expression
1 imasaddf.f . . 3  |-  ( ph  ->  F : V -onto-> B
)
2 imasaddf.e . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
3 imasaddflem.a . . 3  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
4 imasaddfnlemg.v . . 3  |-  ( ph  ->  V  e.  W )
5 imasaddfnlemg.x . . 3  |-  ( ph  ->  .x.  e.  C )
61, 2, 3, 4, 5imasaddfnlemg 13146 . 2  |-  ( ph  -> 
.xb  Fn  ( B  X.  B ) )
7 fof 5498 . . . . . . . . . 10  |-  ( F : V -onto-> B  ->  F : V --> B )
81, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  F : V --> B )
9 ffvelcdm 5713 . . . . . . . . . . 11  |-  ( ( F : V --> B  /\  p  e.  V )  ->  ( F `  p
)  e.  B )
10 ffvelcdm 5713 . . . . . . . . . . 11  |-  ( ( F : V --> B  /\  q  e.  V )  ->  ( F `  q
)  e.  B )
119, 10anim12dan 600 . . . . . . . . . 10  |-  ( ( F : V --> B  /\  ( p  e.  V  /\  q  e.  V
) )  ->  (
( F `  p
)  e.  B  /\  ( F `  q )  e.  B ) )
12 opelxpi 4707 . . . . . . . . . 10  |-  ( ( ( F `  p
)  e.  B  /\  ( F `  q )  e.  B )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  ( B  X.  B
) )
1311, 12syl 14 . . . . . . . . 9  |-  ( ( F : V --> B  /\  ( p  e.  V  /\  q  e.  V
) )  ->  <. ( F `  p ) ,  ( F `  q ) >.  e.  ( B  X.  B ) )
148, 13sylan 283 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  ( B  X.  B
) )
15 imasaddflem.c . . . . . . . . 9  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .x.  q
)  e.  V )
16 ffvelcdm 5713 . . . . . . . . 9  |-  ( ( F : V --> B  /\  ( p  .x.  q )  e.  V )  -> 
( F `  (
p  .x.  q )
)  e.  B )
178, 15, 16syl2an2r 595 . . . . . . . 8  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( F `  (
p  .x.  q )
)  e.  B )
1814, 17opelxpd 4708 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  ( ( B  X.  B
)  X.  B ) )
1918snssd 3778 . . . . . 6  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  B
) )
2019anassrs 400 . . . . 5  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  C_  (
( B  X.  B
)  X.  B ) )
2120iunssd 3973 . . . 4  |-  ( (
ph  /\  p  e.  V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  ( ( B  X.  B )  X.  B ) )
2221iunssd 3973 . . 3  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  B
) )
233, 22eqsstrd 3229 . 2  |-  ( ph  -> 
.xb  C_  ( ( B  X.  B )  X.  B ) )
24 dff2 5724 . 2  |-  (  .xb  : ( B  X.  B
) --> B  <->  (  .xb  Fn  ( B  X.  B
)  /\  .xb  C_  (
( B  X.  B
)  X.  B ) ) )
256, 23, 24sylanbrc 417 1  |-  ( ph  -> 
.xb  : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   {csn 3633   <.cop 3636   U_ciun 3927    X. cxp 4673    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947
This theorem is referenced by:  imasaddf  13151  imasmulf  13154  qusaddflemg  13166
  Copyright terms: Public domain W3C validator