ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 Unicode version

Theorem ixp0 6697
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )

Proof of Theorem ixp0
Dummy variables  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3429 . . . 4  |-  ( -. 
E. z  z  e.  B  <->  B  =  (/) )
21rexbii 2473 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  <->  E. x  e.  A  B  =  (/) )
3 rexnalim 2455 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  ->  -.  A. x  e.  A  E. z  z  e.  B )
42, 3sylbir 134 . 2  |-  ( E. x  e.  A  B  =  (/)  ->  -.  A. x  e.  A  E. z 
z  e.  B )
5 ixpm 6696 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
65con3i 622 . . 3  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  -.  E. f 
f  e.  X_ x  e.  A  B )
7 notm0 3429 . . 3  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
86, 7sylib 121 . 2  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  X_ x  e.  A  B  =  (/) )
94, 8syl 14 1  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   (/)c0 3409   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-nul 3410  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator