ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 Unicode version

Theorem ixp0 6818
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )

Proof of Theorem ixp0
Dummy variables  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3481 . . . 4  |-  ( -. 
E. z  z  e.  B  <->  B  =  (/) )
21rexbii 2513 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  <->  E. x  e.  A  B  =  (/) )
3 rexnalim 2495 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  ->  -.  A. x  e.  A  E. z  z  e.  B )
42, 3sylbir 135 . 2  |-  ( E. x  e.  A  B  =  (/)  ->  -.  A. x  e.  A  E. z 
z  e.  B )
5 ixpm 6817 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
65con3i 633 . . 3  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  -.  E. f 
f  e.  X_ x  e.  A  B )
7 notm0 3481 . . 3  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
86, 7sylib 122 . 2  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  X_ x  e.  A  B  =  (/) )
94, 8syl 14 1  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   (/)c0 3460   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-nul 3461  df-ixp 6786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator