ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 Unicode version

Theorem ixp0 6733
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )

Proof of Theorem ixp0
Dummy variables  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3445 . . . 4  |-  ( -. 
E. z  z  e.  B  <->  B  =  (/) )
21rexbii 2484 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  <->  E. x  e.  A  B  =  (/) )
3 rexnalim 2466 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  ->  -.  A. x  e.  A  E. z  z  e.  B )
42, 3sylbir 135 . 2  |-  ( E. x  e.  A  B  =  (/)  ->  -.  A. x  e.  A  E. z 
z  e.  B )
5 ixpm 6732 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
65con3i 632 . . 3  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  -.  E. f 
f  e.  X_ x  e.  A  B )
7 notm0 3445 . . 3  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
86, 7sylib 122 . 2  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  X_ x  e.  A  B  =  (/) )
94, 8syl 14 1  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   (/)c0 3424   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-nul 3425  df-ixp 6701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator