ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 Unicode version

Theorem ixp0 6878
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )

Proof of Theorem ixp0
Dummy variables  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3512 . . . 4  |-  ( -. 
E. z  z  e.  B  <->  B  =  (/) )
21rexbii 2537 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  <->  E. x  e.  A  B  =  (/) )
3 rexnalim 2519 . . 3  |-  ( E. x  e.  A  -.  E. z  z  e.  B  ->  -.  A. x  e.  A  E. z  z  e.  B )
42, 3sylbir 135 . 2  |-  ( E. x  e.  A  B  =  (/)  ->  -.  A. x  e.  A  E. z 
z  e.  B )
5 ixpm 6877 . . . 4  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
65con3i 635 . . 3  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  -.  E. f 
f  e.  X_ x  e.  A  B )
7 notm0 3512 . . 3  |-  ( -. 
E. f  f  e.  X_ x  e.  A  B 
<-> 
X_ x  e.  A  B  =  (/) )
86, 7sylib 122 . 2  |-  ( -. 
A. x  e.  A  E. z  z  e.  B  ->  X_ x  e.  A  B  =  (/) )
94, 8syl 14 1  |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   (/)c0 3491   X_cixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-nul 3492  df-ixp 6846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator