![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixp0 | GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notm0 3445 | . . . 4 ⊢ (¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 2484 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnalim 2466 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
4 | 2, 3 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
5 | ixpm 6732 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
6 | 5 | con3i 632 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
7 | notm0 3445 | . . 3 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
8 | 6, 7 | sylib 122 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 𝐵 = ∅) |
9 | 4, 8 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ∅c0 3424 Xcixp 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-nul 3425 df-ixp 6701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |