Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixp0 | GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notm0 3429 | . . . 4 ⊢ (¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 2473 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnalim 2455 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
4 | 2, 3 | sylbir 134 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
5 | ixpm 6696 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
6 | 5 | con3i 622 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
7 | notm0 3429 | . . 3 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
8 | 6, 7 | sylib 121 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 𝐵 = ∅) |
9 | 4, 8 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ∅c0 3409 Xcixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-nul 3410 df-ixp 6665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |