ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 GIF version

Theorem ixp0 6709
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)

Proof of Theorem ixp0
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3435 . . . 4 (¬ ∃𝑧 𝑧𝐵𝐵 = ∅)
21rexbii 2477 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 ↔ ∃𝑥𝐴 𝐵 = ∅)
3 rexnalim 2459 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
42, 3sylbir 134 . 2 (∃𝑥𝐴 𝐵 = ∅ → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
5 ixpm 6708 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65con3i 627 . . 3 (¬ ∀𝑥𝐴𝑧 𝑧𝐵 → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
7 notm0 3435 . . 3 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
86, 7sylib 121 . 2 (¬ ∀𝑥𝐴𝑧 𝑧𝐵X𝑥𝐴 𝐵 = ∅)
94, 8syl 14 1 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  c0 3414  Xcixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-nul 3415  df-ixp 6677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator