ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 GIF version

Theorem ixp0 6817
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)

Proof of Theorem ixp0
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3480 . . . 4 (¬ ∃𝑧 𝑧𝐵𝐵 = ∅)
21rexbii 2512 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 ↔ ∃𝑥𝐴 𝐵 = ∅)
3 rexnalim 2494 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
42, 3sylbir 135 . 2 (∃𝑥𝐴 𝐵 = ∅ → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
5 ixpm 6816 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65con3i 633 . . 3 (¬ ∀𝑥𝐴𝑧 𝑧𝐵 → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
7 notm0 3480 . . 3 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
86, 7sylib 122 . 2 (¬ ∀𝑥𝐴𝑧 𝑧𝐵X𝑥𝐴 𝐵 = ∅)
94, 8syl 14 1 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  c0 3459  Xcixp 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-nul 3460  df-ixp 6785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator