Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixp0 | GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notm0 3435 | . . . 4 ⊢ (¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 2477 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnalim 2459 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
4 | 2, 3 | sylbir 134 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
5 | ixpm 6708 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
6 | 5 | con3i 627 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
7 | notm0 3435 | . . 3 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
8 | 6, 7 | sylib 121 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 𝐵 = ∅) |
9 | 4, 8 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∅c0 3414 Xcixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-nul 3415 df-ixp 6677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |