| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixp0 | GIF version | ||
| Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notm0 3485 | . . . 4 ⊢ (¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ 𝐵 = ∅) | |
| 2 | 1 | rexbii 2514 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
| 3 | rexnalim 2496 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
| 4 | 2, 3 | sylbir 135 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| 5 | ixpm 6830 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) | |
| 6 | 5 | con3i 633 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → ¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
| 7 | notm0 3485 | . . 3 ⊢ (¬ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 8 | 6, 7 | sylib 122 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| 9 | 4, 8 | syl 14 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∅c0 3464 Xcixp 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-nul 3465 df-ixp 6799 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |