ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 GIF version

Theorem ixp0 6721
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)

Proof of Theorem ixp0
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3441 . . . 4 (¬ ∃𝑧 𝑧𝐵𝐵 = ∅)
21rexbii 2482 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 ↔ ∃𝑥𝐴 𝐵 = ∅)
3 rexnalim 2464 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
42, 3sylbir 135 . 2 (∃𝑥𝐴 𝐵 = ∅ → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
5 ixpm 6720 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65con3i 632 . . 3 (¬ ∀𝑥𝐴𝑧 𝑧𝐵 → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
7 notm0 3441 . . 3 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
86, 7sylib 122 . 2 (¬ ∀𝑥𝐴𝑧 𝑧𝐵X𝑥𝐴 𝐵 = ∅)
94, 8syl 14 1 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1353  wex 1490  wcel 2146  wral 2453  wrex 2454  c0 3420  Xcixp 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-nul 3421  df-ixp 6689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator