ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixp0 GIF version

Theorem ixp0 6785
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixp0 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)

Proof of Theorem ixp0
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notm0 3467 . . . 4 (¬ ∃𝑧 𝑧𝐵𝐵 = ∅)
21rexbii 2501 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 ↔ ∃𝑥𝐴 𝐵 = ∅)
3 rexnalim 2483 . . 3 (∃𝑥𝐴 ¬ ∃𝑧 𝑧𝐵 → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
42, 3sylbir 135 . 2 (∃𝑥𝐴 𝐵 = ∅ → ¬ ∀𝑥𝐴𝑧 𝑧𝐵)
5 ixpm 6784 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
65con3i 633 . . 3 (¬ ∀𝑥𝐴𝑧 𝑧𝐵 → ¬ ∃𝑓 𝑓X𝑥𝐴 𝐵)
7 notm0 3467 . . 3 (¬ ∃𝑓 𝑓X𝑥𝐴 𝐵X𝑥𝐴 𝐵 = ∅)
86, 7sylib 122 . 2 (¬ ∀𝑥𝐴𝑧 𝑧𝐵X𝑥𝐴 𝐵 = ∅)
94, 8syl 14 1 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  c0 3446  Xcixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-nul 3447  df-ixp 6753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator