ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elixp Unicode version

Theorem 0elixp 6742
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
Assertion
Ref Expression
0elixp  |-  (/)  e.  X_ x  e.  (/)  A

Proof of Theorem 0elixp
StepHypRef Expression
1 0ex 4142 . . 3  |-  (/)  e.  _V
21snid 3635 . 2  |-  (/)  e.  { (/)
}
3 ixp0x 6739 . 2  |-  X_ x  e.  (/)  A  =  { (/)
}
42, 3eleqtrri 2263 1  |-  (/)  e.  X_ x  e.  (/)  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   (/)c0 3434   {csn 3604   X_cixp 6711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-fun 5230  df-fn 5231  df-ixp 6712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator