ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elixp Unicode version

Theorem 0elixp 6747
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
Assertion
Ref Expression
0elixp  |-  (/)  e.  X_ x  e.  (/)  A

Proof of Theorem 0elixp
StepHypRef Expression
1 0ex 4145 . . 3  |-  (/)  e.  _V
21snid 3638 . 2  |-  (/)  e.  { (/)
}
3 ixp0x 6744 . 2  |-  X_ x  e.  (/)  A  =  { (/)
}
42, 3eleqtrri 2265 1  |-  (/)  e.  X_ x  e.  (/)  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   (/)c0 3437   {csn 3607   X_cixp 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-fun 5233  df-fn 5234  df-ixp 6717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator