| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | Unicode version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4783 |
. 2
| |
| 2 | df-rel 4682 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: xpiindim 4815 eliunxp 4817 opeliunxp2 4818 relres 4987 restidsing 5015 codir 5071 qfto 5072 cnvcnv 5135 dfco2 5182 unixpm 5218 ressn 5223 fliftcnv 5864 fliftfun 5865 opeliunxp2f 6324 reltpos 6336 tpostpos 6350 tposfo 6357 tposf 6358 swoer 6648 xpider 6693 erinxp 6696 xpcomf1o 6920 ltrel 8134 lerel 8136 fisumcom2 11749 fprodcom2fi 11937 txuni2 14728 txdis1cn 14750 xmeter 14908 reldvg 15151 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |