ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4772
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4771 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4670 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    C_ wss 3157    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  xpiindim  4803  eliunxp  4805  opeliunxp2  4806  relres  4974  restidsing  5002  codir  5058  qfto  5059  cnvcnv  5122  dfco2  5169  unixpm  5205  ressn  5210  fliftcnv  5842  fliftfun  5843  opeliunxp2f  6296  reltpos  6308  tpostpos  6322  tposfo  6329  tposf  6330  swoer  6620  xpider  6665  erinxp  6668  xpcomf1o  6884  ltrel  8088  lerel  8090  fisumcom2  11603  fprodcom2fi  11791  txuni2  14492  txdis1cn  14514  xmeter  14672  reldvg  14915  lgsquadlem1  15318  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator