ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4773
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4772 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4671 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    C_ wss 3157    X. cxp 4662   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-opab 4096  df-xp 4670  df-rel 4671
This theorem is referenced by:  xpiindim  4804  eliunxp  4806  opeliunxp2  4807  relres  4975  restidsing  5003  codir  5059  qfto  5060  cnvcnv  5123  dfco2  5170  unixpm  5206  ressn  5211  fliftcnv  5845  fliftfun  5846  opeliunxp2f  6305  reltpos  6317  tpostpos  6331  tposfo  6338  tposf  6339  swoer  6629  xpider  6674  erinxp  6677  xpcomf1o  6893  ltrel  8105  lerel  8107  fisumcom2  11620  fprodcom2fi  11808  txuni2  14576  txdis1cn  14598  xmeter  14756  reldvg  14999  lgsquadlem1  15402  lgsquadlem2  15403
  Copyright terms: Public domain W3C validator