| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | Unicode version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4784 |
. 2
| |
| 2 | df-rel 4683 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-opab 4107 df-xp 4682 df-rel 4683 |
| This theorem is referenced by: xpiindim 4816 eliunxp 4818 opeliunxp2 4819 relres 4988 restidsing 5016 codir 5072 qfto 5073 cnvcnv 5136 dfco2 5183 unixpm 5219 ressn 5224 fliftcnv 5866 fliftfun 5867 opeliunxp2f 6326 reltpos 6338 tpostpos 6352 tposfo 6359 tposf 6360 swoer 6650 xpider 6695 erinxp 6698 xpcomf1o 6922 ltrel 8136 lerel 8138 fisumcom2 11782 fprodcom2fi 11970 txuni2 14761 txdis1cn 14783 xmeter 14941 reldvg 15184 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |