ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4785
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4784 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4683 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2772    C_ wss 3166    X. cxp 4674   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-opab 4107  df-xp 4682  df-rel 4683
This theorem is referenced by:  xpiindim  4816  eliunxp  4818  opeliunxp2  4819  relres  4988  restidsing  5016  codir  5072  qfto  5073  cnvcnv  5136  dfco2  5183  unixpm  5219  ressn  5224  fliftcnv  5866  fliftfun  5867  opeliunxp2f  6326  reltpos  6338  tpostpos  6352  tposfo  6359  tposf  6360  swoer  6650  xpider  6695  erinxp  6698  xpcomf1o  6922  ltrel  8136  lerel  8138  fisumcom2  11782  fprodcom2fi  11970  txuni2  14761  txdis1cn  14783  xmeter  14941  reldvg  15184  lgsquadlem1  15587  lgsquadlem2  15588
  Copyright terms: Public domain W3C validator