ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4769
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4768 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4667 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    C_ wss 3154    X. cxp 4658   Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666  df-rel 4667
This theorem is referenced by:  xpiindim  4800  eliunxp  4802  opeliunxp2  4803  relres  4971  restidsing  4999  codir  5055  qfto  5056  cnvcnv  5119  dfco2  5166  unixpm  5202  ressn  5207  fliftcnv  5839  fliftfun  5840  opeliunxp2f  6293  reltpos  6305  tpostpos  6319  tposfo  6326  tposf  6327  swoer  6617  xpider  6662  erinxp  6665  xpcomf1o  6881  ltrel  8083  lerel  8085  fisumcom2  11584  fprodcom2fi  11772  txuni2  14435  txdis1cn  14457  xmeter  14615  reldvg  14858  lgsquadlem1  15234  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator