ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4768
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4767 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4666 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    C_ wss 3153    X. cxp 4657   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  xpiindim  4799  eliunxp  4801  opeliunxp2  4802  relres  4970  restidsing  4998  codir  5054  qfto  5055  cnvcnv  5118  dfco2  5165  unixpm  5201  ressn  5206  fliftcnv  5838  fliftfun  5839  opeliunxp2f  6291  reltpos  6303  tpostpos  6317  tposfo  6324  tposf  6325  swoer  6615  xpider  6660  erinxp  6663  xpcomf1o  6879  ltrel  8081  lerel  8083  fisumcom2  11581  fprodcom2fi  11769  txuni2  14424  txdis1cn  14446  xmeter  14604  reldvg  14833  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator