| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | Unicode version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4772 |
. 2
| |
| 2 | df-rel 4671 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: xpiindim 4804 eliunxp 4806 opeliunxp2 4807 relres 4975 restidsing 5003 codir 5059 qfto 5060 cnvcnv 5123 dfco2 5170 unixpm 5206 ressn 5211 fliftcnv 5845 fliftfun 5846 opeliunxp2f 6305 reltpos 6317 tpostpos 6331 tposfo 6338 tposf 6339 swoer 6629 xpider 6674 erinxp 6677 xpcomf1o 6893 ltrel 8105 lerel 8107 fisumcom2 11620 fprodcom2fi 11808 txuni2 14576 txdis1cn 14598 xmeter 14756 reldvg 14999 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |