| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | Unicode version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4827 |
. 2
| |
| 2 | df-rel 4726 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: xpiindim 4859 eliunxp 4861 opeliunxp2 4862 relres 5033 restidsing 5061 codir 5117 qfto 5118 cnvcnv 5181 dfco2 5228 unixpm 5264 ressn 5269 fliftcnv 5919 fliftfun 5920 opeliunxp2f 6384 reltpos 6396 tpostpos 6410 tposfo 6417 tposf 6418 swoer 6708 xpider 6753 erinxp 6756 xpcomf1o 6984 ltrel 8208 lerel 8210 fisumcom2 11949 fprodcom2fi 12137 txuni2 14930 txdis1cn 14952 xmeter 15110 reldvg 15353 lgsquadlem1 15756 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |