ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4802
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4801 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4700 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2776    C_ wss 3174    X. cxp 4691   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-opab 4122  df-xp 4699  df-rel 4700
This theorem is referenced by:  xpiindim  4833  eliunxp  4835  opeliunxp2  4836  relres  5006  restidsing  5034  codir  5090  qfto  5091  cnvcnv  5154  dfco2  5201  unixpm  5237  ressn  5242  fliftcnv  5887  fliftfun  5888  opeliunxp2f  6347  reltpos  6359  tpostpos  6373  tposfo  6380  tposf  6381  swoer  6671  xpider  6716  erinxp  6719  xpcomf1o  6945  ltrel  8169  lerel  8171  fisumcom2  11864  fprodcom2fi  12052  txuni2  14843  txdis1cn  14865  xmeter  15023  reldvg  15266  lgsquadlem1  15669  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator