ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relxp Unicode version

Theorem relxp 4828
Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
relxp  |-  Rel  ( A  X.  B )

Proof of Theorem relxp
StepHypRef Expression
1 xpss 4827 . 2  |-  ( A  X.  B )  C_  ( _V  X.  _V )
2 df-rel 4726 . 2  |-  ( Rel  ( A  X.  B
)  <->  ( A  X.  B )  C_  ( _V  X.  _V ) )
31, 2mpbir 146 1  |-  Rel  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    C_ wss 3197    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  xpiindim  4859  eliunxp  4861  opeliunxp2  4862  relres  5033  restidsing  5061  codir  5117  qfto  5118  cnvcnv  5181  dfco2  5228  unixpm  5264  ressn  5269  fliftcnv  5919  fliftfun  5920  opeliunxp2f  6384  reltpos  6396  tpostpos  6410  tposfo  6417  tposf  6418  swoer  6708  xpider  6753  erinxp  6756  xpcomf1o  6984  ltrel  8208  lerel  8210  fisumcom2  11949  fprodcom2fi  12137  txuni2  14930  txdis1cn  14952  xmeter  15110  reldvg  15353  lgsquadlem1  15756  lgsquadlem2  15757
  Copyright terms: Public domain W3C validator