| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relxp | Unicode version | ||
| Description: A cross product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| relxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4801 |
. 2
| |
| 2 | df-rel 4700 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: xpiindim 4833 eliunxp 4835 opeliunxp2 4836 relres 5006 restidsing 5034 codir 5090 qfto 5091 cnvcnv 5154 dfco2 5201 unixpm 5237 ressn 5242 fliftcnv 5887 fliftfun 5888 opeliunxp2f 6347 reltpos 6359 tpostpos 6373 tposfo 6380 tposf 6381 swoer 6671 xpider 6716 erinxp 6719 xpcomf1o 6945 ltrel 8169 lerel 8171 fisumcom2 11864 fprodcom2fi 12052 txuni2 14843 txdis1cn 14865 xmeter 15023 reldvg 15266 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |