| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lerel | GIF version | ||
| Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerel | ⊢ Rel ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lerelxr 8142 | . 2 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 4788 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 4766 | . 2 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ )) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel ≤ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3167 × cxp 4677 Rel wrel 4684 ℝ*cxr 8113 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-opab 4110 df-xp 4685 df-rel 4686 df-le 8120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |