| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlenlt | Unicode version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrlenlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4046 |
. . 3
| |
| 2 | opelxpi 4708 |
. . . 4
| |
| 3 | df-le 8115 |
. . . . . . 7
| |
| 4 | 3 | eleq2i 2272 |
. . . . . 6
|
| 5 | eldif 3175 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 184 |
. . . . 5
|
| 7 | 6 | baib 921 |
. . . 4
|
| 8 | 2, 7 | syl 14 |
. . 3
|
| 9 | 1, 8 | bitrid 192 |
. 2
|
| 10 | df-br 4046 |
. . . 4
| |
| 11 | opelcnvg 4859 |
. . . 4
| |
| 12 | 10, 11 | bitr4id 199 |
. . 3
|
| 13 | 12 | notbid 669 |
. 2
|
| 14 | 9, 13 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-le 8115 |
| This theorem is referenced by: lenlt 8150 pnfge 9913 mnfle 9916 xrltle 9922 xrleid 9924 xnn0dcle 9926 xrletri3 9928 xrlelttr 9930 xrltletr 9931 xrletr 9932 xgepnf 9940 xleneg 9961 xltadd1 10000 xsubge0 10005 xleaddadd 10011 iccid 10049 icc0r 10050 icodisj 10116 ioodisj 10117 ioo0 10404 ico0 10406 ioc0 10407 leisorel 10984 xrmaxleim 11588 xrmaxiflemval 11594 xrmaxlesup 11603 xrmaxaddlem 11604 xrminmax 11609 pcadd 12696 bldisj 14906 bdxmet 15006 bdbl 15008 |
| Copyright terms: Public domain | W3C validator |