ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlenlt Unicode version

Theorem xrlenlt 8137
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 4045 . . 3  |-  ( A  <_  B  <->  <. A ,  B >.  e.  <_  )
2 opelxpi 4707 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  <. A ,  B >.  e.  ( RR*  X. 
RR* ) )
3 df-le 8113 . . . . . . 7  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
43eleq2i 2272 . . . . . 6  |-  ( <. A ,  B >.  e. 
<_ 
<-> 
<. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )
)
5 eldif 3175 . . . . . 6  |-  ( <. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )  <->  (
<. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  )
)
64, 5bitri 184 . . . . 5  |-  ( <. A ,  B >.  e. 
<_ 
<->  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  ) )
76baib 921 . . . 4  |-  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  ->  ( <. A ,  B >.  e.  <_  <->  -.  <. A ,  B >.  e.  `'  <  ) )
82, 7syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e. 
<_ 
<->  -.  <. A ,  B >.  e.  `'  <  )
)
91, 8bitrid 192 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  <. A ,  B >.  e.  `'  <  ) )
10 df-br 4045 . . . 4  |-  ( B  <  A  <->  <. B ,  A >.  e.  <  )
11 opelcnvg 4858 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e.  `'  <  <->  <. B ,  A >.  e.  <  ) )
1210, 11bitr4id 199 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  <->  <. A ,  B >.  e.  `'  <  ) )
1312notbid 669 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  A  <->  -.  <. A ,  B >.  e.  `'  <  ) )
149, 13bitr4d 191 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176    \ cdif 3163   <.cop 3636   class class class wbr 4044    X. cxp 4673   `'ccnv 4674   RR*cxr 8106    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-le 8113
This theorem is referenced by:  lenlt  8148  pnfge  9911  mnfle  9914  xrltle  9920  xrleid  9922  xnn0dcle  9924  xrletri3  9926  xrlelttr  9928  xrltletr  9929  xrletr  9930  xgepnf  9938  xleneg  9959  xltadd1  9998  xsubge0  10003  xleaddadd  10009  iccid  10047  icc0r  10048  icodisj  10114  ioodisj  10115  ioo0  10402  ico0  10404  ioc0  10405  leisorel  10982  xrmaxleim  11555  xrmaxiflemval  11561  xrmaxlesup  11570  xrmaxaddlem  11571  xrminmax  11576  pcadd  12663  bldisj  14873  bdxmet  14973  bdbl  14975
  Copyright terms: Public domain W3C validator