Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrlenlt | Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . 3 | |
2 | opelxpi 4636 | . . . 4 | |
3 | df-le 7939 | . . . . . . 7 | |
4 | 3 | eleq2i 2233 | . . . . . 6 |
5 | eldif 3125 | . . . . . 6 | |
6 | 4, 5 | bitri 183 | . . . . 5 |
7 | 6 | baib 909 | . . . 4 |
8 | 2, 7 | syl 14 | . . 3 |
9 | 1, 8 | syl5bb 191 | . 2 |
10 | df-br 3983 | . . . 4 | |
11 | opelcnvg 4784 | . . . 4 | |
12 | 10, 11 | bitr4id 198 | . . 3 |
13 | 12 | notbid 657 | . 2 |
14 | 9, 13 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 cdif 3113 cop 3579 class class class wbr 3982 cxp 4602 ccnv 4603 cxr 7932 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-le 7939 |
This theorem is referenced by: lenlt 7974 pnfge 9725 mnfle 9728 xrltle 9734 xrleid 9736 xnn0dcle 9738 xrletri3 9740 xrlelttr 9742 xrltletr 9743 xrletr 9744 xgepnf 9752 xleneg 9773 xltadd1 9812 xsubge0 9817 xleaddadd 9823 iccid 9861 icc0r 9862 icodisj 9928 ioodisj 9929 ioo0 10195 ico0 10197 ioc0 10198 leisorel 10750 xrmaxleim 11185 xrmaxiflemval 11191 xrmaxlesup 11200 xrmaxaddlem 11201 xrminmax 11206 pcadd 12271 bldisj 13041 bdxmet 13141 bdbl 13143 |
Copyright terms: Public domain | W3C validator |