Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrlenlt | Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3988 | . . 3 | |
2 | opelxpi 4641 | . . . 4 | |
3 | df-le 7953 | . . . . . . 7 | |
4 | 3 | eleq2i 2237 | . . . . . 6 |
5 | eldif 3130 | . . . . . 6 | |
6 | 4, 5 | bitri 183 | . . . . 5 |
7 | 6 | baib 914 | . . . 4 |
8 | 2, 7 | syl 14 | . . 3 |
9 | 1, 8 | syl5bb 191 | . 2 |
10 | df-br 3988 | . . . 4 | |
11 | opelcnvg 4789 | . . . 4 | |
12 | 10, 11 | bitr4id 198 | . . 3 |
13 | 12 | notbid 662 | . 2 |
14 | 9, 13 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 cdif 3118 cop 3584 class class class wbr 3987 cxp 4607 ccnv 4608 cxr 7946 clt 7947 cle 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-le 7953 |
This theorem is referenced by: lenlt 7988 pnfge 9739 mnfle 9742 xrltle 9748 xrleid 9750 xnn0dcle 9752 xrletri3 9754 xrlelttr 9756 xrltletr 9757 xrletr 9758 xgepnf 9766 xleneg 9787 xltadd1 9826 xsubge0 9831 xleaddadd 9837 iccid 9875 icc0r 9876 icodisj 9942 ioodisj 9943 ioo0 10209 ico0 10211 ioc0 10212 leisorel 10765 xrmaxleim 11200 xrmaxiflemval 11206 xrmaxlesup 11215 xrmaxaddlem 11216 xrminmax 11221 pcadd 12286 bldisj 13160 bdxmet 13260 bdbl 13262 |
Copyright terms: Public domain | W3C validator |