ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlenlt Unicode version

Theorem xrlenlt 8024
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 4006 . . 3  |-  ( A  <_  B  <->  <. A ,  B >.  e.  <_  )
2 opelxpi 4660 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  <. A ,  B >.  e.  ( RR*  X. 
RR* ) )
3 df-le 8000 . . . . . . 7  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
43eleq2i 2244 . . . . . 6  |-  ( <. A ,  B >.  e. 
<_ 
<-> 
<. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )
)
5 eldif 3140 . . . . . 6  |-  ( <. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )  <->  (
<. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  )
)
64, 5bitri 184 . . . . 5  |-  ( <. A ,  B >.  e. 
<_ 
<->  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  ) )
76baib 919 . . . 4  |-  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  ->  ( <. A ,  B >.  e.  <_  <->  -.  <. A ,  B >.  e.  `'  <  ) )
82, 7syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e. 
<_ 
<->  -.  <. A ,  B >.  e.  `'  <  )
)
91, 8bitrid 192 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  <. A ,  B >.  e.  `'  <  ) )
10 df-br 4006 . . . 4  |-  ( B  <  A  <->  <. B ,  A >.  e.  <  )
11 opelcnvg 4809 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e.  `'  <  <->  <. B ,  A >.  e.  <  ) )
1210, 11bitr4id 199 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  <->  <. A ,  B >.  e.  `'  <  ) )
1312notbid 667 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  A  <->  -.  <. A ,  B >.  e.  `'  <  ) )
149, 13bitr4d 191 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    \ cdif 3128   <.cop 3597   class class class wbr 4005    X. cxp 4626   `'ccnv 4627   RR*cxr 7993    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-le 8000
This theorem is referenced by:  lenlt  8035  pnfge  9791  mnfle  9794  xrltle  9800  xrleid  9802  xnn0dcle  9804  xrletri3  9806  xrlelttr  9808  xrltletr  9809  xrletr  9810  xgepnf  9818  xleneg  9839  xltadd1  9878  xsubge0  9883  xleaddadd  9889  iccid  9927  icc0r  9928  icodisj  9994  ioodisj  9995  ioo0  10262  ico0  10264  ioc0  10265  leisorel  10819  xrmaxleim  11254  xrmaxiflemval  11260  xrmaxlesup  11269  xrmaxaddlem  11270  xrminmax  11275  pcadd  12341  bldisj  13940  bdxmet  14040  bdbl  14042
  Copyright terms: Public domain W3C validator