ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlenlt Unicode version

Theorem xrlenlt 8211
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 4084 . . 3  |-  ( A  <_  B  <->  <. A ,  B >.  e.  <_  )
2 opelxpi 4751 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  <. A ,  B >.  e.  ( RR*  X. 
RR* ) )
3 df-le 8187 . . . . . . 7  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
43eleq2i 2296 . . . . . 6  |-  ( <. A ,  B >.  e. 
<_ 
<-> 
<. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )
)
5 eldif 3206 . . . . . 6  |-  ( <. A ,  B >.  e.  ( ( RR*  X.  RR* )  \  `'  <  )  <->  (
<. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  )
)
64, 5bitri 184 . . . . 5  |-  ( <. A ,  B >.  e. 
<_ 
<->  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  /\  -.  <. A ,  B >.  e.  `'  <  ) )
76baib 924 . . . 4  |-  ( <. A ,  B >.  e.  ( RR*  X.  RR* )  ->  ( <. A ,  B >.  e.  <_  <->  -.  <. A ,  B >.  e.  `'  <  ) )
82, 7syl 14 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e. 
<_ 
<->  -.  <. A ,  B >.  e.  `'  <  )
)
91, 8bitrid 192 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  <. A ,  B >.  e.  `'  <  ) )
10 df-br 4084 . . . 4  |-  ( B  <  A  <->  <. B ,  A >.  e.  <  )
11 opelcnvg 4902 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( <. A ,  B >.  e.  `'  <  <->  <. B ,  A >.  e.  <  ) )
1210, 11bitr4id 199 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  <->  <. A ,  B >.  e.  `'  <  ) )
1312notbid 671 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  A  <->  -.  <. A ,  B >.  e.  `'  <  ) )
149, 13bitr4d 191 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200    \ cdif 3194   <.cop 3669   class class class wbr 4083    X. cxp 4717   `'ccnv 4718   RR*cxr 8180    < clt 8181    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-le 8187
This theorem is referenced by:  lenlt  8222  pnfge  9985  mnfle  9988  xrltle  9994  xrleid  9996  xnn0dcle  9998  xrletri3  10000  xrlelttr  10002  xrltletr  10003  xrletr  10004  xgepnf  10012  xleneg  10033  xltadd1  10072  xsubge0  10077  xleaddadd  10083  iccid  10121  icc0r  10122  icodisj  10188  ioodisj  10189  ioo0  10479  ico0  10481  ioc0  10482  leisorel  11059  xrmaxleim  11755  xrmaxiflemval  11761  xrmaxlesup  11770  xrmaxaddlem  11771  xrminmax  11776  pcadd  12863  bldisj  15075  bdxmet  15175  bdbl  15177
  Copyright terms: Public domain W3C validator