Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrlenlt | Unicode version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . 3 | |
2 | opelxpi 4643 | . . . 4 | |
3 | df-le 7960 | . . . . . . 7 | |
4 | 3 | eleq2i 2237 | . . . . . 6 |
5 | eldif 3130 | . . . . . 6 | |
6 | 4, 5 | bitri 183 | . . . . 5 |
7 | 6 | baib 914 | . . . 4 |
8 | 2, 7 | syl 14 | . . 3 |
9 | 1, 8 | syl5bb 191 | . 2 |
10 | df-br 3990 | . . . 4 | |
11 | opelcnvg 4791 | . . . 4 | |
12 | 10, 11 | bitr4id 198 | . . 3 |
13 | 12 | notbid 662 | . 2 |
14 | 9, 13 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2141 cdif 3118 cop 3586 class class class wbr 3989 cxp 4609 ccnv 4610 cxr 7953 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-le 7960 |
This theorem is referenced by: lenlt 7995 pnfge 9746 mnfle 9749 xrltle 9755 xrleid 9757 xnn0dcle 9759 xrletri3 9761 xrlelttr 9763 xrltletr 9764 xrletr 9765 xgepnf 9773 xleneg 9794 xltadd1 9833 xsubge0 9838 xleaddadd 9844 iccid 9882 icc0r 9883 icodisj 9949 ioodisj 9950 ioo0 10216 ico0 10218 ioc0 10219 leisorel 10772 xrmaxleim 11207 xrmaxiflemval 11213 xrmaxlesup 11222 xrmaxaddlem 11223 xrminmax 11228 pcadd 12293 bldisj 13195 bdxmet 13295 bdbl 13297 |
Copyright terms: Public domain | W3C validator |