ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onn0 Unicode version

Theorem onn0 4238
Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
Assertion
Ref Expression
onn0  |-  On  =/=  (/)

Proof of Theorem onn0
StepHypRef Expression
1 0elon 4230 . 2  |-  (/)  e.  On
2 ne0i 3295 . 2  |-  ( (/)  e.  On  ->  On  =/=  (/) )
31, 2ax-mp 7 1  |-  On  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 1439    =/= wne 2256   (/)c0 3289   Oncon0 4201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-nul 3973
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2624  df-dif 3004  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-uni 3662  df-tr 3945  df-iord 4204  df-on 4206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator