| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elong | Unicode version | ||
| Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| elong |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 4463 |
. 2
| |
| 2 | df-on 4459 |
. 2
| |
| 3 | 1, 2 | elab2g 2950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 |
| This theorem is referenced by: elon 4465 eloni 4466 elon2 4467 ordelon 4474 onin 4477 limelon 4490 ssonuni 4580 onsuc 4593 onsucb 4595 onintonm 4609 onprc 4644 omelon2 4700 bj-nnelon 16322 |
| Copyright terms: Public domain | W3C validator |