ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong Unicode version

Theorem elong 4421
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )

Proof of Theorem elong
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordeq 4420 . 2  |-  ( x  =  A  ->  ( Ord  x  <->  Ord  A ) )
2 df-on 4416 . 2  |-  On  =  { x  |  Ord  x }
31, 2elab2g 2920 1  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2176   Ord word 4410   Oncon0 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4144  df-iord 4414  df-on 4416
This theorem is referenced by:  elon  4422  eloni  4423  elon2  4424  ordelon  4431  onin  4434  limelon  4447  ssonuni  4537  onsuc  4550  onsucb  4552  onintonm  4566  onprc  4601  omelon2  4657  bj-nnelon  15932
  Copyright terms: Public domain W3C validator