Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elong | Unicode version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elong |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 4347 | . 2 | |
2 | df-on 4343 | . 2 | |
3 | 1, 2 | elab2g 2871 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2135 word 4337 con0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2726 df-in 3120 df-ss 3127 df-uni 3787 df-tr 4078 df-iord 4341 df-on 4343 |
This theorem is referenced by: elon 4349 eloni 4350 elon2 4351 ordelon 4358 onin 4361 limelon 4374 ssonuni 4462 suceloni 4475 sucelon 4477 onintonm 4491 onprc 4526 omelon2 4582 bj-nnelon 13734 |
Copyright terms: Public domain | W3C validator |