ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong Unicode version

Theorem elong 4404
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )

Proof of Theorem elong
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordeq 4403 . 2  |-  ( x  =  A  ->  ( Ord  x  <->  Ord  A ) )
2 df-on 4399 . 2  |-  On  =  { x  |  Ord  x }
31, 2elab2g 2907 1  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  elon  4405  eloni  4406  elon2  4407  ordelon  4414  onin  4417  limelon  4430  ssonuni  4520  onsuc  4533  onsucb  4535  onintonm  4549  onprc  4584  omelon2  4640  bj-nnelon  15451
  Copyright terms: Public domain W3C validator