ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong Unicode version

Theorem elong 4348
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )

Proof of Theorem elong
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordeq 4347 . 2  |-  ( x  =  A  ->  ( Ord  x  <->  Ord  A ) )
2 df-on 4343 . 2  |-  On  =  { x  |  Ord  x }
31, 2elab2g 2871 1  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2135   Ord word 4337   Oncon0 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2726  df-in 3120  df-ss 3127  df-uni 3787  df-tr 4078  df-iord 4341  df-on 4343
This theorem is referenced by:  elon  4349  eloni  4350  elon2  4351  ordelon  4358  onin  4361  limelon  4374  ssonuni  4462  suceloni  4475  sucelon  4477  onintonm  4491  onprc  4526  omelon2  4582  bj-nnelon  13734
  Copyright terms: Public domain W3C validator