Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limeq | Unicode version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 4350 | . . 3 | |
2 | eleq2 2230 | . . 3 | |
3 | id 19 | . . . 4 | |
4 | unieq 3798 | . . . 4 | |
5 | 3, 4 | eqeq12d 2180 | . . 3 |
6 | 1, 2, 5 | 3anbi123d 1302 | . 2 |
7 | dflim2 4348 | . 2 | |
8 | dflim2 4348 | . 2 | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 wceq 1343 wcel 2136 c0 3409 cuni 3789 word 4340 wlim 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-ilim 4347 |
This theorem is referenced by: limuni2 4375 |
Copyright terms: Public domain | W3C validator |