ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limeq Unicode version

Theorem limeq 4408
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq  |-  ( A  =  B  ->  ( Lim  A  <->  Lim  B ) )

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 4403 . . 3  |-  ( A  =  B  ->  ( Ord  A  <->  Ord  B ) )
2 eleq2 2257 . . 3  |-  ( A  =  B  ->  ( (/) 
e.  A  <->  (/)  e.  B
) )
3 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
4 unieq 3844 . . . 4  |-  ( A  =  B  ->  U. A  =  U. B )
53, 4eqeq12d 2208 . . 3  |-  ( A  =  B  ->  ( A  =  U. A  <->  B  =  U. B ) )
61, 2, 53anbi123d 1323 . 2  |-  ( A  =  B  ->  (
( Ord  A  /\  (/) 
e.  A  /\  A  =  U. A )  <->  ( Ord  B  /\  (/)  e.  B  /\  B  =  U. B ) ) )
7 dflim2 4401 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
8 dflim2 4401 . 2  |-  ( Lim 
B  <->  ( Ord  B  /\  (/)  e.  B  /\  B  =  U. B ) )
96, 7, 83bitr4g 223 1  |-  ( A  =  B  ->  ( Lim  A  <->  Lim  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   (/)c0 3446   U.cuni 3835   Ord word 4393   Lim wlim 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-ilim 4400
This theorem is referenced by:  limuni2  4428
  Copyright terms: Public domain W3C validator