ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring Unicode version

Theorem lringring 13956
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring  |-  ( R  e. LRing  ->  R  e.  Ring )

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 13955 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 nzrring 13945 . 2  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( R  e. LRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   Ringcrg 13758  NzRingcnzr 13941  LRingclring 13952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-in 3172  df-ss 3179  df-nzr 13942  df-lring 13953
This theorem is referenced by:  lringuplu  13958  aprcotr  14047  aprap  14048
  Copyright terms: Public domain W3C validator