ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring Unicode version

Theorem lringring 13690
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring  |-  ( R  e. LRing  ->  R  e.  Ring )

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 13689 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 nzrring 13679 . 2  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( R  e. LRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   Ringcrg 13492  NzRingcnzr 13675  LRingclring 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3159  df-ss 3166  df-nzr 13676  df-lring 13687
This theorem is referenced by:  lringuplu  13692  aprcotr  13781  aprap  13782
  Copyright terms: Public domain W3C validator