ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring Unicode version

Theorem lringring 13927
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring  |-  ( R  e. LRing  ->  R  e.  Ring )

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 13926 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 nzrring 13916 . 2  |-  ( R  e. NzRing  ->  R  e.  Ring )
31, 2syl 14 1  |-  ( R  e. LRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   Ringcrg 13729  NzRingcnzr 13912  LRingclring 13923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-in 3171  df-ss 3178  df-nzr 13913  df-lring 13924
This theorem is referenced by:  lringuplu  13929  aprcotr  14018  aprap  14019
  Copyright terms: Public domain W3C validator