HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 153)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzringsubgval 13901 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 13902 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremmulgghm2 13903* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 13904* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 13905* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 13906 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 13907 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 13908 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 13909 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13059). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 13910 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 13911* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhvalg 13912 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 13913* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 13914 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
 
Theoremzrhex 13915 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
Theoremzrhrhmb 13916 The  ZRHom homomorphism is the unique ring homomorphism from  ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  ( F  e.  (ring RingHom  R )  <->  F  =  L )
 )
 
Theoremzrhrhm 13917 The  ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
 
Theoremzrh1 13918 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 13919 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzlmval 13920 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 13921 Lemma for zlmbasg 13922 and zlmplusgg 13923. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 13922 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 13923 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 13924 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 13925 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 13926 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 13927 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 13928 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 13929 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznle 13930 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznval2 13931 Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznbaslemnn 13932 Lemma for znbas 13936. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
Theoremznbas2 13933 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
Theoremznadd 13934 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
Theoremznmul 13935 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
Theoremznbas 13936 The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  Y  =  (ℤ/n `  N )   &    |-  R  =  (ring ~QG  ( S `
  { N }
 ) )   =>    |-  ( N  e.  NN0  ->  ( ZZ /. R )  =  ( Base `  Y ) )
 
Theoremzncrng 13937 ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  Y  e.  CRing )
 
PART 8  BASIC LINEAR ALGEBRA

According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13350), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13349).

For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.

 
8.1  Abstract multivariate polynomials
 
8.1.1  Definition and basic properties
 
Syntaxcmps 13938 Multivariate power series.
 class mPwSer
 
Definitiondf-psr 13939* Define the algebra of power series over the index set  i and with coefficients from the ring  r. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mPwSer  =  ( i  e.  _V ,  r  e.  _V  |->  [_
 { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin } 
 /  d ]_ [_ (
 ( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base ` 
 ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r
 )  |`  ( b  X.  b ) ) >. , 
 <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
 `  r ) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  r >. , 
 <. ( .s `  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
 ( TopOpen `  r ) } ) ) >. } ) )
 
Theoremreldmpsr 13940 The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- 
 Rel  dom mPwSer
 
Theorempsrval 13941* Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  O  =  ( TopOpen `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  ( ph  ->  B  =  ( K  ^m  D ) )   &    |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )   &    |-  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  ( g `
  ( k  oF  -  x ) ) ) ) ) ) )   &    |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f ) )   &    |-  ( ph  ->  J  =  (
 Xt_ `  ( D  X.  { O } )
 ) )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  X )   =>    |-  ( ph  ->  S  =  ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } ) )
 
Theorempsrex 13942 The multivariate power series structure is a set. (Contributed by Jim Kingdon, 10-Jun-2025.)
 |-  ( ( I  e.  W  /\  R  e.  X )  ->  ( I mPwSer  R )  e.  _V )
 
Theorempsrvalstrd 13943 The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  .+  e.  Y )   &    |-  ( ph  ->  .X.  e.  Z )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ph  ->  .x. 
 e.  P )   &    |-  ( ph  ->  J  e.  Q )   =>    |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. (TopSet `  ndx ) ,  J >. } ) Struct  <. 1 ,  9 >. )
 
Theorempsrbag 13944* Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
 
Theorempsrbagf 13945* A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( F  e.  D  ->  F : I --> NN0 )
 
Theoremfczpsrbag 13946* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( x  e.  I  |->  0 )  e.  D )
 
Theorempsrbaglesuppg 13947* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F ) ) 
 ->  ( `' G " NN )  C_  ( `' F " NN )
 )
 
Theorempsrbasg 13948* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  B  =  ( K  ^m  D ) )
 
PART 9  BASIC TOPOLOGY
 
9.1  Topology
 
9.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
9.1.1.1  Topologies
 
Syntaxctop 13949 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 13950* Define the class of topologies. It is a proper class. See istopg 13951 and istopfin 13952 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 13951* Express the predicate " J is a topology". See istopfin 13952 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 13952* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 13951. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 13953 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 13954* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 13955 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
 
Theoremfiinopn 13956 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
 |-  ( J  e.  Top  ->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
 
Theoremunopn 13957 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B )  e.  J )
 
Theorem0opn 13958 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  J )
 
Theorem0ntop 13959 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
 |- 
 -.  (/)  e.  Top
 
Theoremtopopn 13960 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  J )
 
Theoremeltopss 13961 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  J ) 
 ->  A  C_  X )
 
9.1.1.2  Topologies on sets
 
Syntaxctopon 13962 Syntax for the function of topologies on sets.
 class TopOn
 
Definitiondf-topon 13963* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
 |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  |  b  =  U. j }
 )
 
Theoremfuntopon 13964 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
 |- 
 Fun TopOn
 
Theoremistopon 13965 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  <->  ( J  e.  Top  /\  B  =  U. J ) )
 
Theoremtopontop 13966 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  J  e.  Top )
 
Theoremtoponuni 13967 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  B  =  U. J )
 
Theoremtopontopi 13968 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  J  e.  Top
 
Theoremtoponunii 13969 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  B  =  U. J
 
Theoremtoptopon 13970 Alternative definition of  Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
 
Theoremtoptopon2 13971 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
 
Theoremtopontopon 13972 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  (TopOn `  X )  ->  J  e.  (TopOn `  U. J ) )
 
Theoremtoponrestid 13973 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
 |-  A  e.  (TopOn `  B )   =>    |-  A  =  ( At  B )
 
Theoremtoponsspwpwg 13974 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
 |-  ( A  e.  V  ->  (TopOn `  A )  C_ 
 ~P ~P A )
 
Theoremdmtopon 13975 The domain of TopOn is  _V. (Contributed by BJ, 29-Apr-2021.)
 |- 
 dom TopOn  =  _V
 
Theoremfntopon 13976 The class TopOn is a function with domain  _V. (Contributed by BJ, 29-Apr-2021.)
 |- TopOn  Fn  _V
 
Theoremtoponmax 13977 The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  B  e.  J )
 
Theoremtoponss 13978 A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  A  C_  X )
 
Theoremtoponcom 13979 If  K is a topology on the base set of topology  J, then  J is a topology on the base of  K. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
 
Theoremtoponcomb 13980 Biconditional form of toponcom 13979. (Contributed by BJ, 5-Dec-2021.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn ` 
 U. K )  <->  K  e.  (TopOn ` 
 U. J ) ) )
 
Theoremtopgele 13981 The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  ( { (/) ,  X }  C_  J  /\  J  C_  ~P X ) )
 
9.1.1.3  Topological spaces
 
Syntaxctps 13982 Syntax for the class of topological spaces.
 class  TopSp
 
Definitiondf-topsp 13983 Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.)
 |- 
 TopSp  =  { f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) ) }
 
Theoremistps 13984 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  <->  J  e.  (TopOn `  A ) )
 
Theoremistps2 13985 Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  <->  ( J  e.  Top  /\  A  =  U. J ) )
 
Theoremtpsuni 13986 The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  ->  A  =  U. J )
 
Theoremtpstop 13987 The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
 |-  J  =  ( TopOpen `  K )   =>    |-  ( K  e.  TopSp  ->  J  e.  Top )
 
Theoremtpspropd 13988 A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  ( TopOpen `  K )  =  (
 TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  TopSp 
 <->  L  e.  TopSp ) )
 
Theoremtopontopn 13989 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (TopSet `  K )   =>    |-  ( J  e.  (TopOn `  A )  ->  J  =  ( TopOpen `  K )
 )
 
Theoremtsettps 13990 If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (TopSet `  K )   =>    |-  ( J  e.  (TopOn `  A )  ->  K  e.  TopSp )
 
Theoremistpsi 13991 Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
 |-  ( Base `  K )  =  A   &    |-  ( TopOpen `  K )  =  J   &    |-  A  =  U. J   &    |-  J  e.  Top   =>    |-  K  e.  TopSp
 
Theoremeltpsg 13992 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  K  =  { <. (
 Base `  ndx ) ,  A >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  ( J  e.  (TopOn `  A )  ->  K  e.  TopSp )
 
Theoremeltpsi 13993 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  K  =  { <. (
 Base `  ndx ) ,  A >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  A  =  U. J   &    |-  J  e.  Top   =>    |-  K  e.  TopSp
 
9.1.2  Topological bases
 
Syntaxctb 13994 Syntax for the class of topological bases.
 class  TopBases
 
Definitiondf-bases 13995* Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 13997). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.)
 |-  TopBases 
 =  { x  |  A. y  e.  x  A. z  e.  x  ( y  i^i  z ) 
 C_  U. ( x  i^i  ~P ( y  i^i  z
 ) ) }
 
Theoremisbasisg 13996* Express the predicate "the set 
B is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y ) 
 C_  U. ( B  i^i  ~P ( x  i^i  y
 ) ) ) )
 
Theoremisbasis2g 13997* Express the predicate "the set 
B is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
 
Theoremisbasis3g 13998* Express the predicate "the set 
B is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  ( A. x  e.  B  x  C_  U. B  /\  A. x  e.  U. B E. y  e.  B  x  e.  y  /\  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y
 ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) ) )
 
Theorembasis1 13999 Property of a basis. (Contributed by NM, 16-Jul-2006.)
 |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
 
Theorembasis2 14000* Property of a basis. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15286
  Copyright terms: Public domain < Previous  Next >