Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | lmodsubdir 13901 | 
Scalar multiplication distributive law for subtraction.  (Contributed by
       NM, 2-Jul-2014.)
 | 
                     
                      Scalar                                                   
                                                                                                                            
           | 
|   | 
| Theorem | lmodsubeq0 13902 | 
If the difference between two vectors is zero, they are equal.
       (Contributed by NM, 31-Mar-2014.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
                                                                             
              
               | 
|   | 
| Theorem | lmodsubid 13903 | 
Subtraction of a vector from itself.  (Contributed by NM, 16-Apr-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                                                                    
     | 
|   | 
| Theorem | lmodprop2d 13904* | 
If two structures have the same components (properties), one is a left
       module iff the other one is.  This version of lmodpropd 13905 also breaks up
       the components of the scalar ring.  (Contributed by Mario Carneiro,
       27-Jun-2015.)
 | 
                                                       Scalar                 Scalar                                                                      
        
      
                                            
        
      
                                            
        
      
                                                
      
                                           
      
       | 
|   | 
| Theorem | lmodpropd 13905* | 
If two structures have the same components (properties), one is a left
       module iff the other one is.  (Contributed by Mario Carneiro,
       8-Feb-2015.)  (Revised by Mario Carneiro, 27-Jun-2015.)
 | 
                                                            
        
      
                                      
      Scalar                 
      Scalar                
                               
      
                                           
      
       | 
|   | 
| Theorem | rmodislmodlem 13906* | 
Lemma for rmodislmod 13907.  This is the part of the proof of rmodislmod 13907
       which requires the scalar ring to be commutative.  (Contributed by AV,
       3-Dec-2021.)
 | 
                     
                                       
  Scalar                                                  
                                                        
                              
                                  
                     
              
                          
              
                                                                               sSet                                          
        
      
        
                          | 
|   | 
| Theorem | rmodislmod 13907* | 
The right module  
induces a left module  
by replacing the
       scalar multiplication with a reversed multiplication if the scalar ring
       is commutative.  The hypothesis "rmodislmod.r" is a definition
of a
       right module analogous to Definition df-lmod 13845 of a left module, see
       also islmod 13847.  (Contributed by AV, 3-Dec-2021.)  (Proof
shortened by
       AV, 18-Oct-2024.)
 | 
                     
                                       
  Scalar                                                  
                                                        
                              
                                  
                     
              
                          
              
                                                                               sSet                                  
    | 
|   | 
| 7.5.2  Subspaces and spans in a left
 module
 | 
|   | 
| Syntax | clss 13908 | 
Extend class notation with linear subspaces of a left module or left
     vector space.
 | 
    | 
|   | 
| Definition | df-lssm 13909* | 
A linear subspace of a left module or left vector space is an inhabited
       (in contrast to non-empty for non-intuitionistic logic) subset of the
       base set of the left-module/vector space with a closure condition on
       vector addition and scalar multiplication.  (Contributed by NM,
       8-Dec-2013.)
 | 
                                             
     Scalar             
                               | 
|   | 
| Theorem | lssex 13910 | 
Existence of a linear subspace.  (Contributed by Jim Kingdon,
       27-Apr-2025.)
 | 
                      | 
|   | 
| Theorem | lssmex 13911 | 
If a linear subspace is inhabited, the class it is built from is a set.
       (Contributed by Jim Kingdon, 28-Apr-2025.)
 | 
                                    | 
|   | 
| Theorem | lsssetm 13912* | 
The set of all (not necessarily closed) linear subspaces of a left
       module or left vector space.  (Contributed by NM, 8-Dec-2013.)  (Revised
       by Mario Carneiro, 15-Jul-2014.)
 | 
       Scalar                                                                                        
                                                                                    
        | 
|   | 
| Theorem | islssm 13913* | 
The predicate "is a subspace" (of a left module or left vector
space).
         (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
         8-Jan-2015.)
 | 
       Scalar                                                                                        
                            
                                  
             
          | 
|   | 
| Theorem | islssmg 13914* | 
The predicate "is a subspace" (of a left module or left vector
space).
       (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       8-Jan-2015.)  Use islssm 13913 instead.  (New usage is discouraged.)
 | 
       Scalar                                                                                        
                                     
                                  
             
           | 
|   | 
| Theorem | islssmd 13915* | 
Properties that determine a subspace of a left module or left vector
       space.  (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       8-Jan-2015.)
 | 
            Scalar                                                                                                                                                                                                 
        
      
        
                                                      | 
|   | 
| Theorem | lssssg 13916 | 
A subspace is a set of vectors.  (Contributed by NM, 8-Dec-2013.)
       (Revised by Mario Carneiro, 8-Jan-2015.)
 | 
                                                                | 
|   | 
| Theorem | lsselg 13917 | 
A subspace member is a vector.  (Contributed by NM, 11-Jan-2014.)
       (Revised by Mario Carneiro, 8-Jan-2015.)
 | 
                                                              
          | 
|   | 
| Theorem | lss1 13918 | 
The set of vectors in a left module is a subspace.  (Contributed by NM,
       8-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                                      | 
|   | 
| Theorem | lssuni 13919 | 
The union of all subspaces is the vector space.  (Contributed by NM,
       13-Mar-2015.)
 | 
                                                              
         | 
|   | 
| Theorem | lssclg 13920 | 
Closure property of a subspace.  (Contributed by NM, 8-Dec-2013.)
       (Revised by Mario Carneiro, 8-Jan-2015.)
 | 
       Scalar                               
                                       
                                                     
      
              
      | 
|   | 
| Theorem | lssvacl 13921 | 
Closure of vector addition in a subspace.  (Contributed by NM,
       11-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                                               
        
      
              | 
|   | 
| Theorem | lssvsubcl 13922 | 
Closure of vector subtraction in a subspace.  (Contributed by NM,
       31-Mar-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                                         
        
      
              | 
|   | 
| Theorem | lssvancl1 13923 | 
Non-closure: if one vector belongs to a subspace but another does not,
       their sum does not belong.  Useful for obtaining a new vector not in a
       subspace.  (Contributed by NM, 14-May-2015.)
 | 
                     
                                                            
                                                                                                  | 
|   | 
| Theorem | lssvancl2 13924 | 
Non-closure: if one vector belongs to a subspace but another does not,
       their sum does not belong.  Useful for obtaining a new vector not in a
       subspace.  (Contributed by NM, 20-May-2015.)
 | 
                     
                                                            
                                                                                                  | 
|   | 
| Theorem | lss0cl 13925 | 
The zero vector belongs to every subspace.  (Contributed by NM,
         12-Jan-2014.)  (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                        
         
          | 
|   | 
| Theorem | lsssn0 13926 | 
The singleton of the zero vector is a subspace.  (Contributed by NM,
         13-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                                     | 
|   | 
| Theorem | lss0ss 13927 | 
The zero subspace is included in every subspace.  (Contributed by NM,
       27-Mar-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                        
         
              | 
|   | 
| Theorem | lssle0 13928 | 
No subspace is smaller than the zero subspace.  (Contributed by NM,
       20-Apr-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                        
         
         
        
           | 
|   | 
| Theorem | lssvneln0 13929 | 
A vector   which
doesn't belong to a subspace   is nonzero.
       (Contributed by NM, 14-May-2015.)  (Revised by AV, 19-Jul-2022.)
 | 
     
                                                         
                                          
         | 
|   | 
| Theorem | lssneln0 13930 | 
A vector   which
doesn't belong to a subspace   is nonzero.
       (Contributed by NM, 14-May-2015.)  (Revised by AV, 17-Jul-2022.)  (Proof
       shortened by AV, 19-Jul-2022.)
 | 
     
                                                         
                                          
                                      | 
|   | 
| Theorem | lssvscl 13931 | 
Closure of scalar product in a subspace.  (Contributed by NM,
       11-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar               
                                                                                       
                | 
|   | 
| Theorem | lssvnegcl 13932 | 
Closure of negative vectors in a subspace.  (Contributed by Stefan
       O'Rear, 11-Dec-2014.)
 | 
                                                            
             
    | 
|   | 
| Theorem | lsssubg 13933 | 
All subspaces are subgroups.  (Contributed by Stefan O'Rear,
       11-Dec-2014.)
 | 
                                            SubGrp     | 
|   | 
| Theorem | lsssssubg 13934 | 
All subspaces are subgroups.  (Contributed by Mario Carneiro,
       19-Apr-2016.)
 | 
                                  SubGrp     | 
|   | 
| Theorem | islss3 13935 | 
A linear subspace of a module is a subset which is a module in its own
       right.  (Contributed by Stefan O'Rear, 6-Dec-2014.)  (Revised by Mario
       Carneiro, 30-Apr-2015.)
 | 
         ↾s                                                    
         
                       | 
|   | 
| Theorem | lsslmod 13936 | 
A submodule is a module.  (Contributed by Stefan O'Rear,
       12-Dec-2014.)
 | 
         ↾s                                     
         
          | 
|   | 
| Theorem | lsslss 13937 | 
The subspaces of a subspace are the smaller subspaces.  (Contributed by
       Stefan O'Rear, 12-Dec-2014.)
 | 
         ↾s                                                                                              | 
|   | 
| Theorem | islss4 13938* | 
A linear subspace is a subgroup which respects scalar multiplication.
       (Contributed by Stefan O'Rear, 11-Dec-2014.)  (Revised by Mario
       Carneiro, 19-Apr-2016.)
 | 
       Scalar                                                                     
                          
             SubGrp                           
        | 
|   | 
| Theorem | lss1d 13939* | 
One-dimensional subspace (or zero-dimensional if   is the zero
       vector).  (Contributed by NM, 14-Jan-2014.)  (Proof shortened by Mario
       Carneiro, 19-Jun-2014.)
 | 
                         Scalar             
                                                                                 
               
      | 
|   | 
| Theorem | lssintclm 13940* | 
The intersection of an inhabited set of subspaces is a subspace.
       (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
                                 
                         | 
|   | 
| Theorem | lssincl 13941 | 
The intersection of two subspaces is a subspace.  (Contributed by NM,
       7-Mar-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                         
               
    | 
|   | 
| Syntax | clspn 13942 | 
Extend class notation with span of a set of vectors.
 | 
    | 
|   | 
| Definition | df-lsp 13943* | 
Define span of a set of vectors of a left module or left vector space.
       (Contributed by NM, 8-Dec-2013.)
 | 
     
                                       
        | 
|   | 
| Theorem | lspfval 13944* | 
The span function for a left vector space (or a left module).
       (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
                                                            
                                      | 
|   | 
| Theorem | lspf 13945 | 
The span function on a left module maps subsets to subspaces.
       (Contributed by Stefan O'Rear, 12-Dec-2014.)
 | 
                                                            
             | 
|   | 
| Theorem | lspval 13946* | 
The span of a set of vectors (in a left module).  (Contributed by NM,
       8-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                                                     
             
                   | 
|   | 
| Theorem | lspcl 13947 | 
The span of a set of vectors is a subspace.  (Contributed by NM,
       9-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                                                     
             
    | 
|   | 
| Theorem | lspsncl 13948 | 
The span of a singleton is a subspace (frequently used special case of
       lspcl 13947).  (Contributed by NM, 17-Jul-2014.)
 | 
                                                                                  
      | 
|   | 
| Theorem | lspprcl 13949 | 
The span of a pair is a subspace (frequently used special case of
       lspcl 13947).  (Contributed by NM, 11-Apr-2015.)
 | 
                                                                                
                                                         | 
|   | 
| Theorem | lsptpcl 13950 | 
The span of an unordered triple is a subspace (frequently used special
       case of lspcl 13947).  (Contributed by NM, 22-May-2015.)
 | 
                                                                                
                                                                      
          | 
|   | 
| Theorem | lspex 13951 | 
Existence of the span of a set of vectors.  (Contributed by Jim Kingdon,
       25-Apr-2025.)
 | 
                      | 
|   | 
| Theorem | lspsnsubg 13952 | 
The span of a singleton is an additive subgroup (frequently used special
       case of lspcl 13947).  (Contributed by Mario Carneiro,
21-Apr-2016.)
 | 
                                             
         
              SubGrp     | 
|   | 
| Theorem | lspid 13953 | 
The span of a subspace is itself.  (Contributed by NM, 15-Dec-2013.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
         
              | 
|   | 
| Theorem | lspssv 13954 | 
A span is a set of vectors.  (Contributed by NM, 22-Feb-2014.)  (Revised
       by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
         
              | 
|   | 
| Theorem | lspss 13955 | 
Span preserves subset ordering.  (Contributed by NM, 11-Dec-2013.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
                         
          | 
|   | 
| Theorem | lspssid 13956 | 
A set of vectors is a subset of its span.  (Contributed by NM,
       6-Feb-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
         
              | 
|   | 
| Theorem | lspidm 13957 | 
The span of a set of vectors is idempotent.  (Contributed by NM,
       22-Feb-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
         
                      | 
|   | 
| Theorem | lspun 13958 | 
The span of union is the span of the union of spans.  (Contributed by
       NM, 22-Feb-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
                         
      
                        | 
|   | 
| Theorem | lspssp 13959 | 
If a set of vectors is a subset of a subspace, then the span of those
       vectors is also contained in the subspace.  (Contributed by Mario
       Carneiro, 4-Sep-2014.)
 | 
                                             
                         
      | 
|   | 
| Theorem | lspsnss 13960 | 
The span of the singleton of a subspace member is included in the
       subspace.  (Contributed by NM, 9-Apr-2014.)  (Revised by Mario Carneiro,
       4-Sep-2014.)
 | 
                                             
                                 | 
|   | 
| Theorem | lspsnel3 13961 | 
A member of the span of the singleton of a vector is a member of a
       subspace containing the vector.  (Contributed by NM, 4-Jul-2014.)
 | 
                                                              
                                                                          | 
|   | 
| Theorem | lspprss 13962 | 
The span of a pair of vectors in a subspace belongs to the subspace.
       (Contributed by NM, 12-Jan-2015.)
 | 
                                                              
                                                                             | 
|   | 
| Theorem | lspsnid 13963 | 
A vector belongs to the span of its singleton.  (Contributed by NM,
       9-Apr-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                             
         
                | 
|   | 
| Theorem | lspsnel6 13964 | 
Relationship between a vector and the 1-dim (or 0-dim) subspace it
       generates.  (Contributed by NM, 8-Aug-2014.)  (Revised by Mario
       Carneiro, 8-Jan-2015.)
 | 
                                                                                
                         
                             | 
|   | 
| Theorem | lspsnel5 13965 | 
Relationship between a vector and the 1-dim (or 0-dim) subspace it
       generates.  (Contributed by NM, 8-Aug-2014.)
 | 
                                                                                
                                                                | 
|   | 
| Theorem | lspsnel5a 13966 | 
Relationship between a vector and the 1-dim (or 0-dim) subspace it
       generates.  (Contributed by NM, 20-Feb-2015.)
 | 
                                                              
                                                
      | 
|   | 
| Theorem | lspprid1 13967 | 
A member of a pair of vectors belongs to their span.  (Contributed by
       NM, 14-May-2015.)
 | 
                                                              
                                                         | 
|   | 
| Theorem | lspprid2 13968 | 
A member of a pair of vectors belongs to their span.  (Contributed by
       NM, 14-May-2015.)
 | 
                                                              
                                                         | 
|   | 
| Theorem | lspprvacl 13969 | 
The sum of two vectors belongs to their span.  (Contributed by NM,
       20-May-2015.)
 | 
                     
                                                            
                                                               | 
|   | 
| Theorem | lssats2 13970* | 
A way to express atomisticity (a subspace is the union of its atoms).
       (Contributed by NM, 3-Feb-2015.)
 | 
                                                              
                                         | 
|   | 
| Theorem | lspsneli 13971 | 
A scalar product with a vector belongs to the span of its singleton.
       (Contributed by NM, 2-Jul-2014.)
 | 
                     
                      Scalar                                                                        
                                             
               | 
|   | 
| Theorem | lspsn 13972* | 
Span of the singleton of a vector.  (Contributed by NM, 14-Jan-2014.)
       (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar                                                                     
                                         
                       
      | 
|   | 
| Theorem | ellspsn 13973* | 
Member of span of the singleton of a vector.  (Contributed by NM,
       22-Feb-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar                                                                     
                                                           
           | 
|   | 
| Theorem | lspsnvsi 13974 | 
Span of a scalar product of a singleton.  (Contributed by NM,
       23-Apr-2014.)  (Proof shortened by Mario Carneiro, 4-Sep-2014.)
 | 
       Scalar                                                                     
                                    
                     
          | 
|   | 
| Theorem | lspsnss2 13975* | 
Comparable spans of singletons must have proportional vectors.
       (Contributed by NM, 7-Jun-2015.)
 | 
                         Scalar                                                   
                                                                                        
                       
           | 
|   | 
| Theorem | lspsnneg 13976 | 
Negation does not change the span of a singleton.  (Contributed by NM,
       24-Apr-2014.)  (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 | 
                                                                                                   | 
|   | 
| Theorem | lspsnsub 13977 | 
Swapping subtraction order does not change the span of a singleton.
       (Contributed by NM, 4-Apr-2015.)
 | 
                     
                                                           
                                                                        | 
|   | 
| Theorem | lspsn0 13978 | 
Span of the singleton of the zero vector.  (Contributed by NM,
       15-Jan-2014.)  (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 | 
     
                                                             | 
|   | 
| Theorem | lsp0 13979 | 
Span of the empty set.  (Contributed by Mario Carneiro, 5-Sep-2014.)
 | 
     
                                                         | 
|   | 
| Theorem | lspuni0 13980 | 
Union of the span of the empty set.  (Contributed by NM,
       14-Mar-2015.)
 | 
     
                                                       | 
|   | 
| Theorem | lspun0 13981 | 
The span of a union with the zero subspace.  (Contributed by NM,
       22-May-2015.)
 | 
                                         
                                                                                     | 
|   | 
| Theorem | lspsneq0 13982 | 
Span of the singleton is the zero subspace iff the vector is zero.
       (Contributed by NM, 27-Apr-2014.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
                                         
                                                      
        | 
|   | 
| Theorem | lspsneq0b 13983 | 
Equal singleton spans imply both arguments are zero or both are nonzero.
       (Contributed by NM, 21-Mar-2015.)
 | 
                                         
                                                                                                                    
      
        | 
|   | 
| Theorem | lmodindp1 13984 | 
Two independent (non-colinear) vectors have nonzero sum.  (Contributed
       by NM, 22-Apr-2015.)
 | 
                     
                                                                                                                                
                                     | 
|   | 
| Theorem | lsslsp 13985 | 
Spans in submodules correspond to spans in the containing module.
       (Contributed by Stefan O'Rear, 12-Dec-2014.)  Terms in the equation were
       swapped as proposed by NM on 15-Mar-2015.  (Revised by AV,
       18-Apr-2025.)
 | 
         ↾s                                                                                                            | 
|   | 
| Theorem | lss0v 13986 | 
The zero vector in a submodule equals the zero vector in the including
       module.  (Contributed by NM, 15-Mar-2015.)
 | 
         ↾s                                 
                                        
         
           | 
|   | 
| Theorem | lsspropdg 13987* | 
If two structures have the same components (properties), they have the
       same subspace structure.  (Contributed by Mario Carneiro, 9-Feb-2015.)
       (Revised by Mario Carneiro, 14-Jun-2015.)
 | 
                                                                                      
      
                                                    
      
                                          
      
                                               Scalar                  
         Scalar                                                                          | 
|   | 
| Theorem | lsppropd 13988* | 
If two structures have the same components (properties), they have the
       same span function.  (Contributed by Mario Carneiro, 9-Feb-2015.)
       (Revised by Mario Carneiro, 14-Jun-2015.)  (Revised by AV,
       24-Apr-2024.)
 | 
                                                                                      
      
                                                    
      
                                          
      
                                               Scalar                  
         Scalar                                                                          | 
|   | 
| 7.6  Subring algebras and
 ideals
 | 
|   | 
| 7.6.1  Subring algebras
 | 
|   | 
| Syntax | csra 13989 | 
Extend class notation with the subring algebra generator.
 | 
  subringAlg | 
|   | 
| Syntax | crglmod 13990 | 
Extend class notation with the left module induced by a ring over
     itself.
 | 
  ringLMod | 
|   | 
| Definition | df-sra 13991* | 
Any ring can be regarded as a left algebra over any of its subrings.
       The function subringAlg associates with any ring and any of its
       subrings the left algebra consisting in the ring itself regarded as a
       left algebra over the subring.  It has an inner product which is simply
       the ring product.  (Contributed by Mario Carneiro, 27-Nov-2014.)
       (Revised by Thierry Arnoux, 16-Jun-2019.)
 | 
  subringAlg              
                 sSet   Scalar       
 ↾s      sSet                 sSet
                   | 
|   | 
| Definition | df-rgmod 13992 | 
Any ring can be regarded as a left algebra over itself.  The function
       ringLMod associates with any ring the left algebra consisting in the
       ring itself regarded as a left algebra over itself.  It has an inner
       product which is simply the ring product.  (Contributed by Stefan
       O'Rear, 6-Dec-2014.)
 | 
  ringLMod              subringAlg             | 
|   | 
| Theorem | sraval 13993 | 
Lemma for srabaseg 13995 through sravscag 13999.  (Contributed by Mario
       Carneiro, 27-Nov-2014.)  (Revised by Thierry Arnoux, 16-Jun-2019.)
 | 
                           subringAlg
               sSet   Scalar       
 ↾s      sSet                 sSet
                  | 
|   | 
| Theorem | sralemg 13994 | 
Lemma for srabaseg 13995 and similar theorems.  (Contributed by Mario
         Carneiro, 4-Oct-2015.)  (Revised by Thierry Arnoux, 16-Jun-2019.)
         (Revised by AV, 29-Oct-2024.)
 | 
             subringAlg
                     
                        
                     Slot                
             Scalar                                                                                    | 
|   | 
| Theorem | srabaseg 13995 | 
Base set of a subring algebra.  (Contributed by Stefan O'Rear,
       27-Nov-2014.)  (Revised by Mario Carneiro, 4-Oct-2015.)  (Revised by
       Thierry Arnoux, 16-Jun-2019.)  (Revised by AV, 29-Oct-2024.)
 | 
             subringAlg
                     
                        
                                    | 
|   | 
| Theorem | sraaddgg 13996 | 
Additive operation of a subring algebra.  (Contributed by Stefan O'Rear,
       27-Nov-2014.)  (Revised by Mario Carneiro, 4-Oct-2015.)  (Revised by
       Thierry Arnoux, 16-Jun-2019.)  (Revised by AV, 29-Oct-2024.)
 | 
             subringAlg
                     
                        
                                      | 
|   | 
| Theorem | sramulrg 13997 | 
Multiplicative operation of a subring algebra.  (Contributed by Stefan
       O'Rear, 27-Nov-2014.)  (Revised by Mario Carneiro, 4-Oct-2015.)
       (Revised by Thierry Arnoux, 16-Jun-2019.)  (Revised by AV,
       29-Oct-2024.)
 | 
             subringAlg
                     
                        
                                    | 
|   | 
| Theorem | srascag 13998 | 
The set of scalars of a subring algebra.  (Contributed by Stefan O'Rear,
       27-Nov-2014.)  (Revised by Mario Carneiro, 4-Oct-2015.)  (Revised by
       Thierry Arnoux, 16-Jun-2019.)  (Proof shortened by AV, 12-Nov-2024.)
 | 
             subringAlg
                     
                        
                        ↾s   
    Scalar     | 
|   | 
| Theorem | sravscag 13999 | 
The scalar product operation of a subring algebra.  (Contributed by
       Stefan O'Rear, 27-Nov-2014.)  (Revised by Mario Carneiro, 4-Oct-2015.)
       (Revised by Thierry Arnoux, 16-Jun-2019.)  (Proof shortened by AV,
       12-Nov-2024.)
 | 
             subringAlg
                     
                        
                                    | 
|   | 
| Theorem | sraipg 14000 | 
The inner product operation of a subring algebra.  (Contributed by
       Thierry Arnoux, 16-Jun-2019.)
 | 
             subringAlg
                     
                        
                                    |