HomeHome Intuitionistic Logic Explorer
Theorem List (p. 140 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13901-14000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlspsnel3 13901 A member of the span of the singleton of a vector is a member of a subspace containing the vector. (Contributed by NM, 4-Jul-2014.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  ( N `  { X }
 ) )   =>    |-  ( ph  ->  Y  e.  U )
 
Theoremlspprss 13902 The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  U )   =>    |-  ( ph  ->  ( N `  { X ,  Y } )  C_  U )
 
Theoremlspsnid 13903 A vector belongs to the span of its singleton. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
 
Theoremlspsnel6 13904 Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   =>    |-  ( ph  ->  ( X  e.  U  <->  ( X  e.  V  /\  ( N `  { X } )  C_  U ) ) )
 
Theoremlspsnel5 13905 Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( X  e.  U  <->  ( N `  { X } )  C_  U ) )
 
Theoremlspsnel5a 13906 Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  U )   =>    |-  ( ph  ->  ( N `  { X } )  C_  U )
 
Theoremlspprid1 13907 A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  X  e.  ( N `  { X ,  Y }
 ) )
 
Theoremlspprid2 13908 A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  Y  e.  ( N `  { X ,  Y }
 ) )
 
Theoremlspprvacl 13909 The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  ( N `  { X ,  Y }
 ) )
 
Theoremlssats2 13910* A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   =>    |-  ( ph  ->  U  =  U_ x  e.  U  ( N `  { x } ) )
 
Theoremlspsneli 13911 A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 2-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( A  .x.  X )  e.  ( N `  { X } ) )
 
Theoremlspsn 13912* Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  { X } )  =  {
 v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
 
Theoremellspsn 13913* Member of span of the singleton of a vector. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( U  e.  ( N `  { X }
 ) 
 <-> 
 E. k  e.  K  U  =  ( k  .x.  X ) ) )
 
Theoremlspsnvsi 13914 Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014.) (Proof shortened by Mario Carneiro, 4-Sep-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( N `  { ( R  .x.  X ) }
 )  C_  ( N ` 
 { X } )
 )
 
Theoremlspsnss2 13915* Comparable spans of singletons must have proportional vectors. (Contributed by NM, 7-Jun-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( N `  { X } )  C_  ( N `
  { Y }
 ) 
 <-> 
 E. k  e.  K  X  =  ( k  .x.  Y ) ) )
 
Theoremlspsnneg 13916 Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  M  =  ( invg `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  { ( M `  X ) }
 )  =  ( N `
  { X }
 ) )
 
Theoremlspsnsub 13917 Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  { ( X  .-  Y ) }
 )  =  ( N `
  { ( Y 
 .-  X ) }
 ) )
 
Theoremlspsn0 13918 Span of the singleton of the zero vector. (Contributed by NM, 15-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( W  e.  LMod 
 ->  ( N `  {  .0.  } )  =  {  .0.  } )
 
Theoremlsp0 13919 Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( W  e.  LMod 
 ->  ( N `  (/) )  =  {  .0.  } )
 
Theoremlspuni0 13920 Union of the span of the empty set. (Contributed by NM, 14-Mar-2015.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( W  e.  LMod 
 ->  U. ( N `  (/) )  =  .0.  )
 
Theoremlspun0 13921 The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X 
 C_  V )   =>    |-  ( ph  ->  ( N `  ( X  u.  {  .0.  }
 ) )  =  ( N `  X ) )
 
Theoremlspsneq0 13922 Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( ( N `  { X } )  =  {  .0.  }  <->  X  =  .0.  ) )
 
Theoremlspsneq0b 13923 Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  ( N `  { X }
 )  =  ( N `
  { Y }
 ) )   =>    |-  ( ph  ->  ( X  =  .0.  <->  Y  =  .0.  ) )
 
Theoremlmodindp1 13924 Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   =>    |-  ( ph  ->  ( X  .+  Y )  =/= 
 .0.  )
 
Theoremlsslsp 13925 Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
 |-  X  =  ( Ws  U )   &    |-  M  =  (
 LSpan `  W )   &    |-  N  =  ( LSpan `  X )   &    |-  L  =  ( LSubSp `  W )   =>    |-  (
 ( W  e.  LMod  /\  U  e.  L  /\  G  C_  U )  ->  ( N `  G )  =  ( M `  G ) )
 
Theoremlss0v 13926 The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.)
 |-  X  =  ( Ws  U )   &    |-  .0.  =  ( 0g `  W )   &    |-  Z  =  ( 0g `  X )   &    |-  L  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  L )  ->  Z  =  .0.  )
 
Theoremlsspropdg 13927* If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  K ) ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  L ) ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  ( LSubSp `
  K )  =  ( LSubSp `  L )
 )
 
Theoremlsppropd 13928* If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  K ) ) )   &    |-  ( ph  ->  P  =  ( Base `  (Scalar `  L ) ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  ( LSpan `  K )  =  ( LSpan `  L )
 )
 
7.6  Subring algebras and ideals
 
7.6.1  Subring algebras
 
Syntaxcsra 13929 Extend class notation with the subring algebra generator.
 class subringAlg
 
Syntaxcrglmod 13930 Extend class notation with the left module induced by a ring over itself.
 class ringLMod
 
Definitiondf-sra 13931* Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <. ( .i
 `  ndx ) ,  ( .r `  w ) >. ) ) )
 
Definitiondf-rgmod 13932 Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.)
 |- ringLMod  =  ( w  e.  _V  |->  ( (subringAlg  `  w ) `  ( Base `  w )
 ) )
 
Theoremsraval 13933 Lemma for srabaseg 13935 through sravscag 13939. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ( W  e.  V  /\  S  C_  ( Base `  W ) ) 
 ->  ( (subringAlg  `  W ) `
  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <. ( .i
 `  ndx ) ,  ( .r `  W ) >. ) )
 
Theoremsralemg 13934 Lemma for srabaseg 13935 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   &    |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )   &    |-  (Scalar ` 
 ndx )  =/=  ( E `  ndx )   &    |-  ( .s `  ndx )  =/=  ( E `  ndx )   &    |-  ( .i `  ndx )  =/=  ( E `  ndx )   =>    |-  ( ph  ->  ( E `  W )  =  ( E `  A ) )
 
Theoremsrabaseg 13935 Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Base `  W )  =  ( Base `  A )
 )
 
Theoremsraaddgg 13936 Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( +g  `  W )  =  ( +g  `  A ) )
 
Theoremsramulrg 13937 Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .r `  A ) )
 
Theoremsrascag 13938 The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )
 
Theoremsravscag 13939 The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .s `  A ) )
 
Theoremsraipg 13940 The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( .r `  W )  =  ( .i `  A ) )
 
Theoremsratsetg 13941 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  (TopSet `  W )  =  (TopSet `  A ) )
 
Theoremsraex 13942 Existence of a subring algebra. (Contributed by Jim Kingdon, 16-Apr-2025.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremsratopng 13943 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( TopOpen `  W )  =  (
 TopOpen `  A ) )
 
Theoremsradsg 13944 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  S  C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  ( dist `  W )  =  ( dist `  A )
 )
 
Theoremsraring 13945 Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.)
 |-  A  =  ( (subringAlg  `  R ) `  V )   &    |-  B  =  ( Base `  R )   =>    |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  A  e.  Ring )
 
Theoremsralmod 13946 The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  A  =  ( (subringAlg  `  W ) `  S )   =>    |-  ( S  e.  (SubRing `  W )  ->  A  e.  LMod )
 
Theoremsralmod0g 13947 The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.)
 |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `
  S ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  W ) )   &    |-  ( ph  ->  S 
 C_  ( Base `  W ) )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  .0. 
 =  ( 0g `  A ) )
 
Theoremissubrgd 13948* Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |-  ( ph  ->  S  =  ( Is  D ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  I ) )   &    |-  ( ph  ->  .+  =  (
 +g  `  I )
 )   &    |-  ( ph  ->  D  C_  ( Base `  I )
 )   &    |-  ( ph  ->  .0.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .+  y
 )  e.  D )   &    |-  ( ( ph  /\  x  e.  D )  ->  (
 ( invg `  I
 ) `  x )  e.  D )   &    |-  ( ph  ->  .1. 
 =  ( 1r `  I ) )   &    |-  ( ph  ->  .x.  =  ( .r `  I ) )   &    |-  ( ph  ->  .1.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .x.  y
 )  e.  D )   &    |-  ( ph  ->  I  e.  Ring
 )   =>    |-  ( ph  ->  D  e.  (SubRing `  I )
 )
 
Theoremrlmfn 13949 ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
 |- ringLMod  Fn  _V
 
Theoremrlmvalg 13950 Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( W  e.  V  ->  (ringLMod `  W )  =  ( (subringAlg  `  W ) `
  ( Base `  W ) ) )
 
Theoremrlmbasg 13951 Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
 
Theoremrlmplusgg 13952 Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  (ringLMod `  R )
 ) )
 
Theoremrlm0g 13953 Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( R  e.  V  ->  ( 0g `  R )  =  ( 0g `  (ringLMod `  R )
 ) )
 
Theoremrlmsubg 13954 Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
 |-  ( R  e.  V  ->  ( -g `  R )  =  ( -g `  (ringLMod `  R )
 ) )
 
Theoremrlmmulrg 13955 Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  ( R  e.  V  ->  ( .r `  R )  =  ( .r `  (ringLMod `  R )
 ) )
 
Theoremrlmscabas 13956 Scalars in the ring module have the same base set. (Contributed by Jim Kingdon, 29-Apr-2025.)
 |-  ( R  e.  X  ->  ( Base `  R )  =  ( Base `  (Scalar `  (ringLMod `  R ) ) ) )
 
Theoremrlmvscag 13957 Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( R  e.  V  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R )
 ) )
 
Theoremrlmtopng 13958 Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  ( R  e.  V  ->  ( TopOpen `  R )  =  ( TopOpen `  (ringLMod `  R ) ) )
 
Theoremrlmdsg 13959 Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
 |-  ( R  e.  V  ->  ( dist `  R )  =  ( dist `  (ringLMod `  R ) ) )
 
Theoremrlmlmod 13960 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
 |-  ( R  e.  Ring  ->  (ringLMod `  R )  e. 
 LMod )
 
Theoremrlmvnegg 13961 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
 |-  ( R  e.  V  ->  ( invg `  R )  =  ( invg `  (ringLMod `  R ) ) )
 
Theoremixpsnbasval 13962* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
 |-  ( ( R  e.  V  /\  X  e.  W )  ->  X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R ) } ) `  x ) )  =  {
 f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  ( Base `  R ) ) }
 )
 
7.6.2  Ideals and spans
 
Syntaxclidl 13963 Ring left-ideal function.
 class LIdeal
 
Syntaxcrsp 13964 Ring span function.
 class RSpan
 
Definitiondf-lidl 13965 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |- LIdeal  =  ( LSubSp  o. ringLMod )
 
Definitiondf-rsp 13966 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
 |- RSpan  =  ( LSpan  o. ringLMod )
 
Theoremlidlvalg 13967 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  =  ( LSubSp `  (ringLMod `  W ) ) )
 
Theoremrspvalg 13968 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
 |-  ( W  e.  V  ->  (RSpan `  W )  =  ( LSpan `  (ringLMod `  W ) ) )
 
Theoremlidlex 13969 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  e.  _V )
 
Theoremrspex 13970 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )
 
Theoremlidlmex 13971 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  W  e.  _V )
 
Theoremlidlss 13972 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
 |-  B  =  ( Base `  W )   &    |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  U  C_  B )
 
Theoremlidlssbas 13973 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
 )
 
Theoremlidlbas 13974 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( U  e.  L  ->  ( Base `  I )  =  U )
 
Theoremislidlm 13975* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
 ( x  .x.  a
 )  .+  b )  e.  I ) )
 
Theoremrnglidlmcl 13976 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
 |- 
 .0.  =  ( 0g `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I
 )  /\  ( X  e.  B  /\  Y  e.  I ) )  ->  ( X  .x.  Y )  e.  I )
 
Theoremdflidl2rng 13977* Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I ) )
 
Theoremisridlrng 13978* A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) )
 
Theoremlidl0cl 13979 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  .0.  e.  I
 )
 
Theoremlidlacl 13980 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( X  e.  I  /\  Y  e.  I )
 )  ->  ( X  .+  Y )  e.  I
 )
 
Theoremlidlnegcl 13981 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  N  =  ( invg `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  I ) 
 ->  ( N `  X )  e.  I )
 
Theoremlidlsubg 13982 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  (LIdeal `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R ) )
 
Theoremlidlsubcl 13983 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  U  =  (LIdeal `  R )   &    |-  .-  =  ( -g `  R )   =>    |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( X  e.  I  /\  Y  e.  I )
 )  ->  ( X  .-  Y )  e.  I
 )
 
Theoremdflidl2 13984* Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
 ) ) )
 
Theoremlidl0 13985 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
 
Theoremlidl1 13986 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  U )
 
Theoremrspcl 13987 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  K  =  (RSpan `  R )   &    |-  B  =  (
 Base `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  Ring  /\  G  C_  B )  ->  ( K `  G )  e.  U )
 
Theoremrspssid 13988 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  B  =  (
 Base `  R )   =>    |-  ( ( R  e.  Ring  /\  G  C_  B )  ->  G  C_  ( K `  G ) )
 
Theoremrsp0 13989 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( K `  {  .0.  } )  =  {  .0.  } )
 
Theoremrspssp 13990 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  C_  I )  ->  ( K `  G )  C_  I )
 
Theoremlidlrsppropdg 13991* The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( .r `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r
 `  L ) y ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  (
 (LIdeal `  K )  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L )
 ) )
 
Theoremrnglidlmmgm 13992 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm
 )
 
Theoremrnglidlmsgrp 13993 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp
 )
 
Theoremrnglidlrng 13994 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R ) )  ->  I  e. Rng
 )
 
7.6.3  Two-sided ideals and quotient rings
 
Syntaxc2idl 13995 Ring two-sided ideal function.
 class 2Ideal
 
Definitiondf-2idl 13996 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
 |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr `  r ) ) ) )
 
Theorem2idlmex 13997 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  T  =  (2Ideal `  W )   =>    |-  ( U  e.  T  ->  W  e.  _V )
 
Theorem2idlval 13998 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  T  =  ( I  i^i  J )
 
Theorem2idlvalg 13999 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  ( R  e.  V  ->  T  =  ( I  i^i  J ) )
 
Theoremisridl 14000* A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >