ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring GIF version

Theorem lringring 13760
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 13759 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 13749 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 14 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Ringcrg 13562  NzRingcnzr 13745  LRingclring 13756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-nzr 13746  df-lring 13757
This theorem is referenced by:  lringuplu  13762  aprcotr  13851  aprap  13852
  Copyright terms: Public domain W3C validator