| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringring | GIF version | ||
| Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringring | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lringnzr 13999 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
| 2 | nzrring 13989 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Ringcrg 13802 NzRingcnzr 13985 LRingclring 13996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3173 df-ss 3180 df-nzr 13986 df-lring 13997 |
| This theorem is referenced by: lringuplu 14002 aprcotr 14091 aprap 14092 |
| Copyright terms: Public domain | W3C validator |