ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring GIF version

Theorem lringring 14123
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 14122 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 14112 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 14 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Ringcrg 13925  NzRingcnzr 14108  LRingclring 14119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rab 2497  df-in 3183  df-ss 3190  df-nzr 14109  df-lring 14120
This theorem is referenced by:  lringuplu  14125  aprcotr  14214  aprap  14215
  Copyright terms: Public domain W3C validator