| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lringring | GIF version | ||
| Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringring | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lringnzr 14122 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
| 2 | nzrring 14112 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Ringcrg 13925 NzRingcnzr 14108 LRingclring 14119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-in 3183 df-ss 3190 df-nzr 14109 df-lring 14120 |
| This theorem is referenced by: lringuplu 14125 aprcotr 14214 aprap 14215 |
| Copyright terms: Public domain | W3C validator |