ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring GIF version

Theorem lringring 14166
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 14165 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 14155 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 14 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Ringcrg 13967  NzRingcnzr 14151  LRingclring 14162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210  df-nzr 14152  df-lring 14163
This theorem is referenced by:  lringuplu  14168  aprcotr  14257  aprap  14258
  Copyright terms: Public domain W3C validator