ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringring GIF version

Theorem lringring 13409
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 13408 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 13401 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 14 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2158  Ringcrg 13243  NzRingcnzr 13397  LRingclring 13405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rab 2474  df-in 3147  df-ss 3154  df-nzr 13398  df-lring 13406
This theorem is referenced by:  lringuplu  13411  aprcotr  13469  aprap  13470
  Copyright terms: Public domain W3C validator