| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprcotr | Unicode version | ||
| Description: The apartness relation given by df-apr 14128 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprcotr.b |
|
| aprcotr.ap |
|
| aprcotr.r |
|
| aprcotr.x |
|
| aprcotr.y |
|
| aprcotr.z |
|
| Ref | Expression |
|---|---|
| aprcotr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aprcotr.b |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | eqidd 2207 |
. . . 4
| |
| 4 | eqidd 2207 |
. . . 4
| |
| 5 | aprcotr.r |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | lringring 14041 |
. . . . . . . . 9
| |
| 8 | 5, 7 | syl 14 |
. . . . . . . 8
|
| 9 | 8 | ringgrpd 13852 |
. . . . . . 7
|
| 10 | aprcotr.x |
. . . . . . . 8
| |
| 11 | 10, 1 | eleqtrd 2285 |
. . . . . . 7
|
| 12 | aprcotr.z |
. . . . . . . 8
| |
| 13 | 12, 1 | eleqtrd 2285 |
. . . . . . 7
|
| 14 | aprcotr.y |
. . . . . . . 8
| |
| 15 | 14, 1 | eleqtrd 2285 |
. . . . . . 7
|
| 16 | eqid 2206 |
. . . . . . . 8
| |
| 17 | eqid 2206 |
. . . . . . . 8
| |
| 18 | eqid 2206 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | grpnpncan 13512 |
. . . . . . 7
|
| 20 | 9, 11, 13, 15, 19 | syl13anc 1252 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | aprcotr.ap |
. . . . . . 7
| |
| 23 | eqidd 2207 |
. . . . . . 7
| |
| 24 | eqidd 2207 |
. . . . . . 7
| |
| 25 | 1, 22, 23, 24, 8, 10, 14 | aprval 14129 |
. . . . . 6
|
| 26 | 25 | biimpa 296 |
. . . . 5
|
| 27 | 21, 26 | eqeltrd 2283 |
. . . 4
|
| 28 | 16, 18 | grpsubcl 13497 |
. . . . . . 7
|
| 29 | 9, 11, 13, 28 | syl3anc 1250 |
. . . . . 6
|
| 30 | 29, 1 | eleqtrrd 2286 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | 16, 18 | grpsubcl 13497 |
. . . . . . 7
|
| 33 | 9, 13, 15, 32 | syl3anc 1250 |
. . . . . 6
|
| 34 | 33, 1 | eleqtrrd 2286 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 2, 3, 4, 6, 27, 31, 35 | lringuplu 14043 |
. . 3
|
| 37 | 1, 22, 23, 24, 8, 10, 12 | aprval 14129 |
. . . . . 6
|
| 38 | 37 | biimprd 158 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 1, 22, 23, 24, 8, 12, 14 | aprval 14129 |
. . . . . 6
|
| 41 | 1, 22, 8, 12, 14 | aprsym 14131 |
. . . . . 6
|
| 42 | 40, 41 | sylbird 170 |
. . . . 5
|
| 43 | 42 | adantr 276 |
. . . 4
|
| 44 | 39, 43 | orim12d 788 |
. . 3
|
| 45 | 36, 44 | mpd 13 |
. 2
|
| 46 | 45 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-tpos 6349 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-mulr 13008 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-sbg 13422 df-cmn 13707 df-abl 13708 df-mgp 13768 df-ur 13807 df-srg 13811 df-ring 13845 df-oppr 13915 df-dvdsr 13936 df-unit 13937 df-invr 13968 df-dvr 13979 df-nzr 14027 df-lring 14038 df-apr 14128 |
| This theorem is referenced by: aprap 14133 |
| Copyright terms: Public domain | W3C validator |