| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprcotr | Unicode version | ||
| Description: The apartness relation given by df-apr 14014 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprcotr.b |
|
| aprcotr.ap |
|
| aprcotr.r |
|
| aprcotr.x |
|
| aprcotr.y |
|
| aprcotr.z |
|
| Ref | Expression |
|---|---|
| aprcotr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aprcotr.b |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | eqidd 2205 |
. . . 4
| |
| 4 | eqidd 2205 |
. . . 4
| |
| 5 | aprcotr.r |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | lringring 13927 |
. . . . . . . . 9
| |
| 8 | 5, 7 | syl 14 |
. . . . . . . 8
|
| 9 | 8 | ringgrpd 13738 |
. . . . . . 7
|
| 10 | aprcotr.x |
. . . . . . . 8
| |
| 11 | 10, 1 | eleqtrd 2283 |
. . . . . . 7
|
| 12 | aprcotr.z |
. . . . . . . 8
| |
| 13 | 12, 1 | eleqtrd 2283 |
. . . . . . 7
|
| 14 | aprcotr.y |
. . . . . . . 8
| |
| 15 | 14, 1 | eleqtrd 2283 |
. . . . . . 7
|
| 16 | eqid 2204 |
. . . . . . . 8
| |
| 17 | eqid 2204 |
. . . . . . . 8
| |
| 18 | eqid 2204 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | grpnpncan 13398 |
. . . . . . 7
|
| 20 | 9, 11, 13, 15, 19 | syl13anc 1251 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | aprcotr.ap |
. . . . . . 7
| |
| 23 | eqidd 2205 |
. . . . . . 7
| |
| 24 | eqidd 2205 |
. . . . . . 7
| |
| 25 | 1, 22, 23, 24, 8, 10, 14 | aprval 14015 |
. . . . . 6
|
| 26 | 25 | biimpa 296 |
. . . . 5
|
| 27 | 21, 26 | eqeltrd 2281 |
. . . 4
|
| 28 | 16, 18 | grpsubcl 13383 |
. . . . . . 7
|
| 29 | 9, 11, 13, 28 | syl3anc 1249 |
. . . . . 6
|
| 30 | 29, 1 | eleqtrrd 2284 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | 16, 18 | grpsubcl 13383 |
. . . . . . 7
|
| 33 | 9, 13, 15, 32 | syl3anc 1249 |
. . . . . 6
|
| 34 | 33, 1 | eleqtrrd 2284 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 2, 3, 4, 6, 27, 31, 35 | lringuplu 13929 |
. . 3
|
| 37 | 1, 22, 23, 24, 8, 10, 12 | aprval 14015 |
. . . . . 6
|
| 38 | 37 | biimprd 158 |
. . . . 5
|
| 39 | 38 | adantr 276 |
. . . 4
|
| 40 | 1, 22, 23, 24, 8, 12, 14 | aprval 14015 |
. . . . . 6
|
| 41 | 1, 22, 8, 12, 14 | aprsym 14017 |
. . . . . 6
|
| 42 | 40, 41 | sylbird 170 |
. . . . 5
|
| 43 | 42 | adantr 276 |
. . . 4
|
| 44 | 39, 43 | orim12d 787 |
. . 3
|
| 45 | 36, 44 | mpd 13 |
. 2
|
| 46 | 45 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-tpos 6330 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-iress 12811 df-plusg 12893 df-mulr 12894 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-sbg 13308 df-cmn 13593 df-abl 13594 df-mgp 13654 df-ur 13693 df-srg 13697 df-ring 13731 df-oppr 13801 df-dvdsr 13822 df-unit 13823 df-invr 13854 df-dvr 13865 df-nzr 13913 df-lring 13924 df-apr 14014 |
| This theorem is referenced by: aprap 14019 |
| Copyright terms: Public domain | W3C validator |