ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcotr Unicode version

Theorem aprcotr 14018
Description: The apartness relation given by df-apr 14014 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprcotr.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprcotr.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprcotr.r  |-  ( ph  ->  R  e. LRing )
aprcotr.x  |-  ( ph  ->  X  e.  B )
aprcotr.y  |-  ( ph  ->  Y  e.  B )
aprcotr.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
aprcotr  |-  ( ph  ->  ( X #  Y  -> 
( X #  Z  \/  Y #  Z
) ) )

Proof of Theorem aprcotr
StepHypRef Expression
1 aprcotr.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
21adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  B  =  ( Base `  R )
)
3 eqidd 2205 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 eqidd 2205 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
5 aprcotr.r . . . . 5  |-  ( ph  ->  R  e. LRing )
65adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  R  e. LRing )
7 lringring 13927 . . . . . . . . 9  |-  ( R  e. LRing  ->  R  e.  Ring )
85, 7syl 14 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
98ringgrpd 13738 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
10 aprcotr.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
1110, 1eleqtrd 2283 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  R ) )
12 aprcotr.z . . . . . . . 8  |-  ( ph  ->  Z  e.  B )
1312, 1eleqtrd 2283 . . . . . . 7  |-  ( ph  ->  Z  e.  ( Base `  R ) )
14 aprcotr.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
1514, 1eleqtrd 2283 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  R ) )
16 eqid 2204 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
17 eqid 2204 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
18 eqid 2204 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
1916, 17, 18grpnpncan 13398 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( X  e.  ( Base `  R )  /\  Z  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) ) )  -> 
( ( X (
-g `  R ) Z ) ( +g  `  R ) ( Z ( -g `  R
) Y ) )  =  ( X (
-g `  R ) Y ) )
209, 11, 13, 15, 19syl13anc 1251 . . . . . 6  |-  ( ph  ->  ( ( X (
-g `  R ) Z ) ( +g  `  R ) ( Z ( -g `  R
) Y ) )  =  ( X (
-g `  R ) Y ) )
2120adantr 276 . . . . 5  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z ) ( +g  `  R ) ( Z ( -g `  R ) Y ) )  =  ( X ( -g `  R
) Y ) )
22 aprcotr.ap . . . . . . 7  |-  ( ph  -> #  =  (#r `  R ) )
23 eqidd 2205 . . . . . . 7  |-  ( ph  ->  ( -g `  R
)  =  ( -g `  R ) )
24 eqidd 2205 . . . . . . 7  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
251, 22, 23, 24, 8, 10, 14aprval 14015 . . . . . 6  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
2625biimpa 296 . . . . 5  |-  ( (
ph  /\  X #  Y
)  ->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) )
2721, 26eqeltrd 2281 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z ) ( +g  `  R ) ( Z ( -g `  R ) Y ) )  e.  (Unit `  R ) )
2816, 18grpsubcl 13383 . . . . . . 7  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R )  /\  Z  e.  ( Base `  R
) )  ->  ( X ( -g `  R
) Z )  e.  ( Base `  R
) )
299, 11, 13, 28syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( X ( -g `  R ) Z )  e.  ( Base `  R
) )
3029, 1eleqtrrd 2284 . . . . 5  |-  ( ph  ->  ( X ( -g `  R ) Z )  e.  B )
3130adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( X
( -g `  R ) Z )  e.  B
)
3216, 18grpsubcl 13383 . . . . . . 7  |-  ( ( R  e.  Grp  /\  Z  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  ( Z ( -g `  R
) Y )  e.  ( Base `  R
) )
339, 13, 15, 32syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( Z ( -g `  R ) Y )  e.  ( Base `  R
) )
3433, 1eleqtrrd 2284 . . . . 5  |-  ( ph  ->  ( Z ( -g `  R ) Y )  e.  B )
3534adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( Z
( -g `  R ) Y )  e.  B
)
362, 3, 4, 6, 27, 31, 35lringuplu 13929 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z )  e.  (Unit `  R )  \/  ( Z ( -g `  R ) Y )  e.  (Unit `  R
) ) )
371, 22, 23, 24, 8, 10, 12aprval 14015 . . . . . 6  |-  ( ph  ->  ( X #  Z  <->  ( X
( -g `  R ) Z )  e.  (Unit `  R ) ) )
3837biimprd 158 . . . . 5  |-  ( ph  ->  ( ( X (
-g `  R ) Z )  e.  (Unit `  R )  ->  X #  Z
) )
3938adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z )  e.  (Unit `  R )  ->  X #  Z
) )
401, 22, 23, 24, 8, 12, 14aprval 14015 . . . . . 6  |-  ( ph  ->  ( Z #  Y  <->  ( Z
( -g `  R ) Y )  e.  (Unit `  R ) ) )
411, 22, 8, 12, 14aprsym 14017 . . . . . 6  |-  ( ph  ->  ( Z #  Y  ->  Y #  Z
) )
4240, 41sylbird 170 . . . . 5  |-  ( ph  ->  ( ( Z (
-g `  R ) Y )  e.  (Unit `  R )  ->  Y #  Z
) )
4342adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( Z ( -g `  R
) Y )  e.  (Unit `  R )  ->  Y #  Z
) )
4439, 43orim12d 787 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( (
( X ( -g `  R ) Z )  e.  (Unit `  R
)  \/  ( Z ( -g `  R
) Y )  e.  (Unit `  R )
)  ->  ( X #  Z  \/  Y #  Z ) ) )
4536, 44mpd 13 . 2  |-  ( (
ph  /\  X #  Y
)  ->  ( X #  Z  \/  Y #  Z ) )
4645ex 115 1  |-  ( ph  ->  ( X #  Y  -> 
( X #  Z  \/  Y #  Z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Grpcgrp 13303   -gcsg 13305   Ringcrg 13729  Unitcui 13820  LRingclring 13923  #rcapr 14013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-cmn 13593  df-abl 13594  df-mgp 13654  df-ur 13693  df-srg 13697  df-ring 13731  df-oppr 13801  df-dvdsr 13822  df-unit 13823  df-invr 13854  df-dvr 13865  df-nzr 13913  df-lring 13924  df-apr 14014
This theorem is referenced by:  aprap  14019
  Copyright terms: Public domain W3C validator