ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprcotr Unicode version

Theorem aprcotr 14047
Description: The apartness relation given by df-apr 14043 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprcotr.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprcotr.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprcotr.r  |-  ( ph  ->  R  e. LRing )
aprcotr.x  |-  ( ph  ->  X  e.  B )
aprcotr.y  |-  ( ph  ->  Y  e.  B )
aprcotr.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
aprcotr  |-  ( ph  ->  ( X #  Y  -> 
( X #  Z  \/  Y #  Z
) ) )

Proof of Theorem aprcotr
StepHypRef Expression
1 aprcotr.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  R ) )
21adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  B  =  ( Base `  R )
)
3 eqidd 2206 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 eqidd 2206 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
5 aprcotr.r . . . . 5  |-  ( ph  ->  R  e. LRing )
65adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  R  e. LRing )
7 lringring 13956 . . . . . . . . 9  |-  ( R  e. LRing  ->  R  e.  Ring )
85, 7syl 14 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
98ringgrpd 13767 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
10 aprcotr.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
1110, 1eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  R ) )
12 aprcotr.z . . . . . . . 8  |-  ( ph  ->  Z  e.  B )
1312, 1eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  Z  e.  ( Base `  R ) )
14 aprcotr.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
1514, 1eleqtrd 2284 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  R ) )
16 eqid 2205 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
17 eqid 2205 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
18 eqid 2205 . . . . . . . 8  |-  ( -g `  R )  =  (
-g `  R )
1916, 17, 18grpnpncan 13427 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( X  e.  ( Base `  R )  /\  Z  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) ) )  -> 
( ( X (
-g `  R ) Z ) ( +g  `  R ) ( Z ( -g `  R
) Y ) )  =  ( X (
-g `  R ) Y ) )
209, 11, 13, 15, 19syl13anc 1252 . . . . . 6  |-  ( ph  ->  ( ( X (
-g `  R ) Z ) ( +g  `  R ) ( Z ( -g `  R
) Y ) )  =  ( X (
-g `  R ) Y ) )
2120adantr 276 . . . . 5  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z ) ( +g  `  R ) ( Z ( -g `  R ) Y ) )  =  ( X ( -g `  R
) Y ) )
22 aprcotr.ap . . . . . . 7  |-  ( ph  -> #  =  (#r `  R ) )
23 eqidd 2206 . . . . . . 7  |-  ( ph  ->  ( -g `  R
)  =  ( -g `  R ) )
24 eqidd 2206 . . . . . . 7  |-  ( ph  ->  (Unit `  R )  =  (Unit `  R )
)
251, 22, 23, 24, 8, 10, 14aprval 14044 . . . . . 6  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
2625biimpa 296 . . . . 5  |-  ( (
ph  /\  X #  Y
)  ->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) )
2721, 26eqeltrd 2282 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z ) ( +g  `  R ) ( Z ( -g `  R ) Y ) )  e.  (Unit `  R ) )
2816, 18grpsubcl 13412 . . . . . . 7  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R )  /\  Z  e.  ( Base `  R
) )  ->  ( X ( -g `  R
) Z )  e.  ( Base `  R
) )
299, 11, 13, 28syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( X ( -g `  R ) Z )  e.  ( Base `  R
) )
3029, 1eleqtrrd 2285 . . . . 5  |-  ( ph  ->  ( X ( -g `  R ) Z )  e.  B )
3130adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( X
( -g `  R ) Z )  e.  B
)
3216, 18grpsubcl 13412 . . . . . . 7  |-  ( ( R  e.  Grp  /\  Z  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  ( Z ( -g `  R
) Y )  e.  ( Base `  R
) )
339, 13, 15, 32syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( Z ( -g `  R ) Y )  e.  ( Base `  R
) )
3433, 1eleqtrrd 2285 . . . . 5  |-  ( ph  ->  ( Z ( -g `  R ) Y )  e.  B )
3534adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( Z
( -g `  R ) Y )  e.  B
)
362, 3, 4, 6, 27, 31, 35lringuplu 13958 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z )  e.  (Unit `  R )  \/  ( Z ( -g `  R ) Y )  e.  (Unit `  R
) ) )
371, 22, 23, 24, 8, 10, 12aprval 14044 . . . . . 6  |-  ( ph  ->  ( X #  Z  <->  ( X
( -g `  R ) Z )  e.  (Unit `  R ) ) )
3837biimprd 158 . . . . 5  |-  ( ph  ->  ( ( X (
-g `  R ) Z )  e.  (Unit `  R )  ->  X #  Z
) )
3938adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( X ( -g `  R
) Z )  e.  (Unit `  R )  ->  X #  Z
) )
401, 22, 23, 24, 8, 12, 14aprval 14044 . . . . . 6  |-  ( ph  ->  ( Z #  Y  <->  ( Z
( -g `  R ) Y )  e.  (Unit `  R ) ) )
411, 22, 8, 12, 14aprsym 14046 . . . . . 6  |-  ( ph  ->  ( Z #  Y  ->  Y #  Z
) )
4240, 41sylbird 170 . . . . 5  |-  ( ph  ->  ( ( Z (
-g `  R ) Y )  e.  (Unit `  R )  ->  Y #  Z
) )
4342adantr 276 . . . 4  |-  ( (
ph  /\  X #  Y
)  ->  ( ( Z ( -g `  R
) Y )  e.  (Unit `  R )  ->  Y #  Z
) )
4439, 43orim12d 788 . . 3  |-  ( (
ph  /\  X #  Y
)  ->  ( (
( X ( -g `  R ) Z )  e.  (Unit `  R
)  \/  ( Z ( -g `  R
) Y )  e.  (Unit `  R )
)  ->  ( X #  Z  \/  Y #  Z ) ) )
4536, 44mpd 13 . 2  |-  ( (
ph  /\  X #  Y
)  ->  ( X #  Z  \/  Y #  Z ) )
4645ex 115 1  |-  ( ph  ->  ( X #  Y  -> 
( X #  Z  \/  Y #  Z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   -gcsg 13334   Ringcrg 13758  Unitcui 13849  LRingclring 13952  #rcapr 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-oppr 13830  df-dvdsr 13851  df-unit 13852  df-invr 13883  df-dvr 13894  df-nzr 13942  df-lring 13953  df-apr 14043
This theorem is referenced by:  aprap  14048
  Copyright terms: Public domain W3C validator