ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringuplu Unicode version

Theorem lringuplu 14043
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b  |-  ( ph  ->  B  =  ( Base `  R ) )
lring.u  |-  ( ph  ->  U  =  (Unit `  R ) )
lring.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
lring.l  |-  ( ph  ->  R  e. LRing )
lring.s  |-  ( ph  ->  ( X  .+  Y
)  e.  U )
lring.x  |-  ( ph  ->  X  e.  B )
lring.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
lringuplu  |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U
) )

Proof of Theorem lringuplu
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8  |-  ( ph  ->  R  e. LRing )
2 lringring 14041 . . . . . . . 8  |-  ( R  e. LRing  ->  R  e.  Ring )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
4 lring.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
5 lring.b . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  R ) )
64, 5eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  R ) )
7 lring.s . . . . . . . 8  |-  ( ph  ->  ( X  .+  Y
)  e.  U )
8 lring.u . . . . . . . 8  |-  ( ph  ->  U  =  (Unit `  R ) )
97, 8eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  (Unit `  R ) )
10 eqid 2206 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2206 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
12 eqid 2206 . . . . . . . 8  |-  (/r `  R
)  =  (/r `  R
)
13 eqid 2206 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
1410, 11, 12, 13dvrcan1 13987 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
153, 6, 9, 14syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
1615adantr 276 . . . . 5  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
173adantr 276 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  R  e.  Ring )
18 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
199adantr 276 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  .+  Y
)  e.  (Unit `  R ) )
2011, 13unitmulcl 13960 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  /\  ( X  .+  Y )  e.  (Unit `  R )
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( .r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
) )
2117, 18, 19, 20syl3anc 1250 . . . . 5  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
2216, 21eqeltrrd 2284 . . . 4  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  X  e.  (Unit `  R
) )
238adantr 276 . . . 4  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  U  =  (Unit `  R
) )
2422, 23eleqtrrd 2286 . . 3  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  X  e.  U )
2524orcd 735 . 2  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  e.  U  \/  Y  e.  U
) )
26 lring.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
2726, 5eleqtrd 2285 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  R ) )
2810, 11, 12, 13dvrcan1 13987 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
293, 27, 9, 28syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
3029adantr 276 . . . . 5  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
313adantr 276 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  R  e.  Ring )
32 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( Y (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
339adantr 276 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  .+  Y
)  e.  (Unit `  R ) )
3411, 13unitmulcl 13960 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  /\  ( X  .+  Y )  e.  (Unit `  R )
)  ->  ( ( Y (/r `  R ) ( X  .+  Y ) ) ( .r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
) )
3531, 32, 33, 34syl3anc 1250 . . . . 5  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
3630, 35eqeltrrd 2284 . . . 4  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  Y  e.  (Unit `  R
) )
378adantr 276 . . . 4  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  U  =  (Unit `  R
) )
3836, 37eleqtrrd 2286 . . 3  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  Y  e.  U )
3938olcd 736 . 2  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  e.  U  \/  Y  e.  U
) )
40 eqid 2206 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
4110, 11, 40, 12dvrdir 13990 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) ) )  ->  ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
423, 6, 27, 9, 41syl13anc 1252 . . . 4  |-  ( ph  ->  ( ( X ( +g  `  R ) Y ) (/r `  R
) ( X  .+  Y ) )  =  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
43 lring.p . . . . . . 7  |-  ( ph  ->  .+  =  ( +g  `  R ) )
4443eqcomd 2212 . . . . . 6  |-  ( ph  ->  ( +g  `  R
)  =  .+  )
4544oveqd 5979 . . . . 5  |-  ( ph  ->  ( X ( +g  `  R ) Y )  =  ( X  .+  Y ) )
463ringgrpd 13852 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4710, 40, 46, 6, 27grpcld 13431 . . . . . 6  |-  ( ph  ->  ( X ( +g  `  R ) Y )  e.  ( Base `  R
) )
48 eqid 2206 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
4910, 11, 12, 48dvreq1 13989 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X ( +g  `  R
) Y )  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( 1r `  R )  <->  ( X
( +g  `  R ) Y )  =  ( X  .+  Y ) ) )
503, 47, 9, 49syl3anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( 1r `  R )  <->  ( X
( +g  `  R ) Y )  =  ( X  .+  Y ) ) )
5145, 50mpbird 167 . . . 4  |-  ( ph  ->  ( ( X ( +g  `  R ) Y ) (/r `  R
) ( X  .+  Y ) )  =  ( 1r `  R
) )
5242, 51eqtr3d 2241 . . 3  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R ) )
53 oveq2 5970 . . . . . 6  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
5453eqeq1d 2215 . . . . 5  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R ) ) )
55 eleq1 2269 . . . . . 6  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( v  e.  (Unit `  R )  <->  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
5655orbi2d 792 . . . . 5  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) ) )
5754, 56imbi12d 234 . . . 4  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( ( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) v )  =  ( 1r `  R )  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) )  <->  ( (
( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) ( Y (/r `  R
) ( X  .+  Y ) ) )  =  ( 1r `  R )  ->  (
( X (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )  \/  ( Y (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
) ) ) )
58 oveq1 5969 . . . . . . . 8  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( u ( +g  `  R ) v )  =  ( ( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) v ) )
5958eqeq1d 2215 . . . . . . 7  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
) ) )
60 eleq1 2269 . . . . . . . 8  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( u  e.  (Unit `  R )  <->  ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
6160orbi1d 793 . . . . . . 7  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( u  e.  (Unit `  R
)  \/  v  e.  (Unit `  R )
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
6259, 61imbi12d 234 . . . . . 6  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) )  <-> 
( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) ) )
6362ralbidv 2507 . . . . 5  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) )  <->  A. v  e.  ( Base `  R ) ( ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) ) )
6410, 40, 48, 11islring 14039 . . . . . . 7  |-  ( R  e. LRing 
<->  ( R  e. NzRing  /\  A. u  e.  ( Base `  R ) A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) ) ) )
651, 64sylib 122 . . . . . 6  |-  ( ph  ->  ( R  e. NzRing  /\  A. u  e.  ( Base `  R ) A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) ) ) )
6665simprd 114 . . . . 5  |-  ( ph  ->  A. u  e.  (
Base `  R ) A. v  e.  ( Base `  R ) ( ( u ( +g  `  R ) v )  =  ( 1r `  R )  ->  (
u  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
6710, 11, 12dvrcl 13982 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( X (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
683, 6, 9, 67syl3anc 1250 . . . . 5  |-  ( ph  ->  ( X (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
6963, 66, 68rspcdva 2886 . . . 4  |-  ( ph  ->  A. v  e.  (
Base `  R )
( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
7010, 11, 12dvrcl 13982 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( Y (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
713, 27, 9, 70syl3anc 1250 . . . 4  |-  ( ph  ->  ( Y (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
7257, 69, 71rspcdva 2886 . . 3  |-  ( ph  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
)  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) ) )
7352, 72mpd 13 . 2  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
)  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
7425, 39, 73mpjaodan 800 1  |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   .rcmulr 12995   1rcur 13806   Ringcrg 13843  Unitcui 13934  /rcdvr 13978  NzRingcnzr 14026  LRingclring 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-tpos 6349  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-cmn 13707  df-abl 13708  df-mgp 13768  df-ur 13807  df-srg 13811  df-ring 13845  df-oppr 13915  df-dvdsr 13936  df-unit 13937  df-invr 13968  df-dvr 13979  df-nzr 14027  df-lring 14038
This theorem is referenced by:  aprcotr  14132
  Copyright terms: Public domain W3C validator