ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringuplu Unicode version

Theorem lringuplu 13416
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b  |-  ( ph  ->  B  =  ( Base `  R ) )
lring.u  |-  ( ph  ->  U  =  (Unit `  R ) )
lring.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
lring.l  |-  ( ph  ->  R  e. LRing )
lring.s  |-  ( ph  ->  ( X  .+  Y
)  e.  U )
lring.x  |-  ( ph  ->  X  e.  B )
lring.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
lringuplu  |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U
) )

Proof of Theorem lringuplu
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8  |-  ( ph  ->  R  e. LRing )
2 lringring 13414 . . . . . . . 8  |-  ( R  e. LRing  ->  R  e.  Ring )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
4 lring.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
5 lring.b . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  R ) )
64, 5eleqtrd 2266 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  R ) )
7 lring.s . . . . . . . 8  |-  ( ph  ->  ( X  .+  Y
)  e.  U )
8 lring.u . . . . . . . 8  |-  ( ph  ->  U  =  (Unit `  R ) )
97, 8eleqtrd 2266 . . . . . . 7  |-  ( ph  ->  ( X  .+  Y
)  e.  (Unit `  R ) )
10 eqid 2187 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2187 . . . . . . . 8  |-  (Unit `  R )  =  (Unit `  R )
12 eqid 2187 . . . . . . . 8  |-  (/r `  R
)  =  (/r `  R
)
13 eqid 2187 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
1410, 11, 12, 13dvrcan1 13388 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
153, 6, 9, 14syl3anc 1248 . . . . . 6  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
1615adantr 276 . . . . 5  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  X )
173adantr 276 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  R  e.  Ring )
18 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
199adantr 276 . . . . . 6  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  .+  Y
)  e.  (Unit `  R ) )
2011, 13unitmulcl 13361 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  /\  ( X  .+  Y )  e.  (Unit `  R )
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( .r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
) )
2117, 18, 19, 20syl3anc 1248 . . . . 5  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
2216, 21eqeltrrd 2265 . . . 4  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  X  e.  (Unit `  R
) )
238adantr 276 . . . 4  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  U  =  (Unit `  R
) )
2422, 23eleqtrrd 2267 . . 3  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  X  e.  U )
2524orcd 734 . 2  |-  ( (
ph  /\  ( X
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  e.  U  \/  Y  e.  U
) )
26 lring.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
2726, 5eleqtrd 2266 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  R ) )
2810, 11, 12, 13dvrcan1 13388 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
293, 27, 9, 28syl3anc 1248 . . . . . 6  |-  ( ph  ->  ( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
3029adantr 276 . . . . 5  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  =  Y )
313adantr 276 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  R  e.  Ring )
32 simpr 110 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( Y (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
339adantr 276 . . . . . 6  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  .+  Y
)  e.  (Unit `  R ) )
3411, 13unitmulcl 13361 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  /\  ( X  .+  Y )  e.  (Unit `  R )
)  ->  ( ( Y (/r `  R ) ( X  .+  Y ) ) ( .r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
) )
3531, 32, 33, 34syl3anc 1248 . . . . 5  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( ( Y (/r `  R ) ( X 
.+  Y ) ) ( .r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
)
3630, 35eqeltrrd 2265 . . . 4  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  Y  e.  (Unit `  R
) )
378adantr 276 . . . 4  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  U  =  (Unit `  R
) )
3836, 37eleqtrrd 2267 . . 3  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  ->  Y  e.  U )
3938olcd 735 . 2  |-  ( (
ph  /\  ( Y
(/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) )  -> 
( X  e.  U  \/  Y  e.  U
) )
40 eqid 2187 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
4110, 11, 40, 12dvrdir 13391 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) ) )  ->  ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
423, 6, 27, 9, 41syl13anc 1250 . . . 4  |-  ( ph  ->  ( ( X ( +g  `  R ) Y ) (/r `  R
) ( X  .+  Y ) )  =  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
43 lring.p . . . . . . 7  |-  ( ph  ->  .+  =  ( +g  `  R ) )
4443eqcomd 2193 . . . . . 6  |-  ( ph  ->  ( +g  `  R
)  =  .+  )
4544oveqd 5905 . . . . 5  |-  ( ph  ->  ( X ( +g  `  R ) Y )  =  ( X  .+  Y ) )
463ringgrpd 13257 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4710, 40, 46, 6, 27grpcld 12912 . . . . . 6  |-  ( ph  ->  ( X ( +g  `  R ) Y )  e.  ( Base `  R
) )
48 eqid 2187 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
4910, 11, 12, 48dvreq1 13390 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X ( +g  `  R
) Y )  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( 1r `  R )  <->  ( X
( +g  `  R ) Y )  =  ( X  .+  Y ) ) )
503, 47, 9, 49syl3anc 1248 . . . . 5  |-  ( ph  ->  ( ( ( X ( +g  `  R
) Y ) (/r `  R ) ( X 
.+  Y ) )  =  ( 1r `  R )  <->  ( X
( +g  `  R ) Y )  =  ( X  .+  Y ) ) )
5145, 50mpbird 167 . . . 4  |-  ( ph  ->  ( ( X ( +g  `  R ) Y ) (/r `  R
) ( X  .+  Y ) )  =  ( 1r `  R
) )
5242, 51eqtr3d 2222 . . 3  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R ) )
53 oveq2 5896 . . . . . 6  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) ) )
5453eqeq1d 2196 . . . . 5  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R ) ) )
55 eleq1 2250 . . . . . 6  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( v  e.  (Unit `  R )  <->  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
5655orbi2d 791 . . . . 5  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) ) )
5754, 56imbi12d 234 . . . 4  |-  ( v  =  ( Y (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( ( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) v )  =  ( 1r `  R )  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) )  <->  ( (
( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) ( Y (/r `  R
) ( X  .+  Y ) ) )  =  ( 1r `  R )  ->  (
( X (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )  \/  ( Y (/r `  R
) ( X  .+  Y ) )  e.  (Unit `  R )
) ) ) )
58 oveq1 5895 . . . . . . . 8  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( u ( +g  `  R ) v )  =  ( ( X (/r `  R
) ( X  .+  Y ) ) ( +g  `  R ) v ) )
5958eqeq1d 2196 . . . . . . 7  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
) ) )
60 eleq1 2250 . . . . . . . 8  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( u  e.  (Unit `  R )  <->  ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
6160orbi1d 792 . . . . . . 7  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( u  e.  (Unit `  R
)  \/  v  e.  (Unit `  R )
)  <->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
6259, 61imbi12d 234 . . . . . 6  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) )  <-> 
( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) ) )
6362ralbidv 2487 . . . . 5  |-  ( u  =  ( X (/r `  R ) ( X 
.+  Y ) )  ->  ( A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) )  <->  A. v  e.  ( Base `  R ) ( ( ( X (/r `  R ) ( X 
.+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) ) )
6410, 40, 48, 11islring 13412 . . . . . . 7  |-  ( R  e. LRing 
<->  ( R  e. NzRing  /\  A. u  e.  ( Base `  R ) A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) ) ) )
651, 64sylib 122 . . . . . 6  |-  ( ph  ->  ( R  e. NzRing  /\  A. u  e.  ( Base `  R ) A. v  e.  ( Base `  R
) ( ( u ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( u  e.  (Unit `  R )  \/  v  e.  (Unit `  R ) ) ) ) )
6665simprd 114 . . . . 5  |-  ( ph  ->  A. u  e.  (
Base `  R ) A. v  e.  ( Base `  R ) ( ( u ( +g  `  R ) v )  =  ( 1r `  R )  ->  (
u  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
6710, 11, 12dvrcl 13383 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( X (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
683, 6, 9, 67syl3anc 1248 . . . . 5  |-  ( ph  ->  ( X (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
6963, 66, 68rspcdva 2858 . . . 4  |-  ( ph  ->  A. v  e.  (
Base `  R )
( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) v )  =  ( 1r `  R
)  ->  ( ( X (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R )  \/  v  e.  (Unit `  R )
) ) )
7010, 11, 12dvrcl 13383 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  ( X  .+  Y )  e.  (Unit `  R ) )  -> 
( Y (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
713, 27, 9, 70syl3anc 1248 . . . 4  |-  ( ph  ->  ( Y (/r `  R
) ( X  .+  Y ) )  e.  ( Base `  R
) )
7257, 69, 71rspcdva 2858 . . 3  |-  ( ph  ->  ( ( ( X (/r `  R ) ( X  .+  Y ) ) ( +g  `  R
) ( Y (/r `  R ) ( X 
.+  Y ) ) )  =  ( 1r
`  R )  -> 
( ( X (/r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
)  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) ) )
7352, 72mpd 13 . 2  |-  ( ph  ->  ( ( X (/r `  R ) ( X 
.+  Y ) )  e.  (Unit `  R
)  \/  ( Y (/r `  R ) ( X  .+  Y ) )  e.  (Unit `  R ) ) )
7425, 39, 73mpjaodan 799 1  |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2158   A.wral 2465   ` cfv 5228  (class class class)co 5888   Basecbs 12476   +g cplusg 12551   .rcmulr 12552   1rcur 13211   Ringcrg 13248  Unitcui 13335  /rcdvr 13379  NzRingcnzr 13402  LRingclring 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-tpos 6260  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-plusg 12564  df-mulr 12565  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-minusg 12903  df-cmn 13123  df-abl 13124  df-mgp 13173  df-ur 13212  df-srg 13216  df-ring 13250  df-oppr 13316  df-dvdsr 13337  df-unit 13338  df-invr 13369  df-dvr 13380  df-nzr 13403  df-lring 13411
This theorem is referenced by:  aprcotr  13474
  Copyright terms: Public domain W3C validator