ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnzr Unicode version

Theorem lringnzr 13749
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr  |-  ( R  e. LRing  ->  R  e. NzRing )

Proof of Theorem lringnzr
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 13747 . . 3  |- LRing  =  {
r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
21ssrab3 3269 . 2  |- LRing  C_ NzRing
32sseli 3179 1  |-  ( R  e. LRing  ->  R  e. NzRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   1rcur 13515  Unitcui 13643  NzRingcnzr 13735  LRingclring 13746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-lring 13747
This theorem is referenced by:  lringring  13750  lringnz  13751
  Copyright terms: Public domain W3C validator