ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnzr Unicode version

Theorem lringnzr 13955
Description: A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringnzr  |-  ( R  e. LRing  ->  R  e. NzRing )

Proof of Theorem lringnzr
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lring 13953 . . 3  |- LRing  =  {
r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
21ssrab3 3279 . 2  |- LRing  C_ NzRing
32sseli 3189 1  |-  ( R  e. LRing  ->  R  e. NzRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   1rcur 13721  Unitcui 13849  NzRingcnzr 13941  LRingclring 13952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-in 3172  df-ss 3179  df-lring 13953
This theorem is referenced by:  lringring  13956  lringnz  13957
  Copyright terms: Public domain W3C validator