ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrring Unicode version

Theorem nzrring 13978
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
Assertion
Ref Expression
nzrring  |-  ( R  e. NzRing  ->  R  e.  Ring )

Proof of Theorem nzrring
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-nzr 13975 . . 3  |- NzRing  =  {
r  e.  Ring  |  ( 1r `  r )  =/=  ( 0g `  r ) }
21ssrab3 3279 . 2  |- NzRing  C_  Ring
32sseli 3189 1  |-  ( R  e. NzRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    =/= wne 2376   ` cfv 5272   0gc0g 13121   1rcur 13754   Ringcrg 13791  NzRingcnzr 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-in 3172  df-ss 3179  df-nzr 13975
This theorem is referenced by:  nzrunit  13983  lringring  13989  rrgnz  14063  domnring  14066
  Copyright terms: Public domain W3C validator