ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrring Unicode version

Theorem nzrring 13682
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
Assertion
Ref Expression
nzrring  |-  ( R  e. NzRing  ->  R  e.  Ring )

Proof of Theorem nzrring
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-nzr 13679 . . 3  |- NzRing  =  {
r  e.  Ring  |  ( 1r `  r )  =/=  ( 0g `  r ) }
21ssrab3 3266 . 2  |- NzRing  C_  Ring
32sseli 3176 1  |-  ( R  e. NzRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    =/= wne 2364   ` cfv 5255   0gc0g 12870   1rcur 13458   Ringcrg 13495  NzRingcnzr 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3160  df-ss 3167  df-nzr 13679
This theorem is referenced by:  nzrunit  13687  lringring  13693  rrgnz  13767  domnring  13770
  Copyright terms: Public domain W3C validator