ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nzrring Unicode version

Theorem nzrring 14147
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
Assertion
Ref Expression
nzrring  |-  ( R  e. NzRing  ->  R  e.  Ring )

Proof of Theorem nzrring
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 df-nzr 14144 . . 3  |- NzRing  =  {
r  e.  Ring  |  ( 1r `  r )  =/=  ( 0g `  r ) }
21ssrab3 3310 . 2  |- NzRing  C_  Ring
32sseli 3220 1  |-  ( R  e. NzRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    =/= wne 2400   ` cfv 5318   0gc0g 13289   1rcur 13922   Ringcrg 13959  NzRingcnzr 14143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210  df-nzr 14144
This theorem is referenced by:  nzrunit  14152  lringring  14158  rrgnz  14232  domnring  14235
  Copyright terms: Public domain W3C validator