ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnz Unicode version

Theorem lringnz 14153
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1  |-  .1.  =  ( 1r `  R )
lringnz.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
lringnz  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 14151 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 lringnz.1 . . 3  |-  .1.  =  ( 1r `  R )
3 lringnz.2 . . 3  |-  .0.  =  ( 0g `  R )
42, 3nzrnz 14140 . 2  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
51, 4syl 14 1  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   ` cfv 5317   0gc0g 13284   1rcur 13917  NzRingcnzr 14137  LRingclring 14148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-nzr 14138  df-lring 14149
This theorem is referenced by:  aprap  14244
  Copyright terms: Public domain W3C validator