ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnz Unicode version

Theorem lringnz 13875
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1  |-  .1.  =  ( 1r `  R )
lringnz.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
lringnz  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 13873 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 lringnz.1 . . 3  |-  .1.  =  ( 1r `  R )
3 lringnz.2 . . 3  |-  .0.  =  ( 0g `  R )
42, 3nzrnz 13862 . 2  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
51, 4syl 14 1  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175    =/= wne 2375   ` cfv 5268   0gc0g 13006   1rcur 13639  NzRingcnzr 13859  LRingclring 13870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5229  df-fv 5276  df-nzr 13860  df-lring 13871
This theorem is referenced by:  aprap  13966
  Copyright terms: Public domain W3C validator