ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnz Unicode version

Theorem lringnz 14032
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1  |-  .1.  =  ( 1r `  R )
lringnz.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
lringnz  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 14030 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 lringnz.1 . . 3  |-  .1.  =  ( 1r `  R )
3 lringnz.2 . . 3  |-  .0.  =  ( 0g `  R )
42, 3nzrnz 14019 . 2  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
51, 4syl 14 1  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    =/= wne 2377   ` cfv 5280   0gc0g 13163   1rcur 13796  NzRingcnzr 14016  LRingclring 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-nzr 14017  df-lring 14028
This theorem is referenced by:  aprap  14123
  Copyright terms: Public domain W3C validator