ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lringnz Unicode version

Theorem lringnz 13727
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1  |-  .1.  =  ( 1r `  R )
lringnz.2  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
lringnz  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 13725 . 2  |-  ( R  e. LRing  ->  R  e. NzRing )
2 lringnz.1 . . 3  |-  .1.  =  ( 1r `  R )
3 lringnz.2 . . 3  |-  .0.  =  ( 0g `  R )
42, 3nzrnz 13714 . 2  |-  ( R  e. NzRing  ->  .1.  =/=  .0.  )
51, 4syl 14 1  |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   ` cfv 5258   0gc0g 12903   1rcur 13491  NzRingcnzr 13711  LRingclring 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-nzr 13712  df-lring 13723
This theorem is referenced by:  aprap  13818
  Copyright terms: Public domain W3C validator