ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel Unicode version

Theorem minel 3522
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3521 . . . . 5  |-  ( ( A  e.  C  /\  A  e.  B )  ->  ( C  i^i  B
)  =/=  (/) )
21necon2bi 2431 . . . 4  |-  ( ( C  i^i  B )  =  (/)  ->  -.  ( A  e.  C  /\  A  e.  B )
)
3 imnan 692 . . . 4  |-  ( ( A  e.  C  ->  -.  A  e.  B
)  <->  -.  ( A  e.  C  /\  A  e.  B ) )
42, 3sylibr 134 . . 3  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  C  ->  -.  A  e.  B )
)
54con2d 625 . 2  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  B  ->  -.  A  e.  C )
)
65impcom 125 1  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-in 3172  df-nul 3461
This theorem is referenced by:  unfidisj  7019  hashunlem  10949  ccatval2  11054
  Copyright terms: Public domain W3C validator