ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel Unicode version

Theorem minel 3512
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3511 . . . . 5  |-  ( ( A  e.  C  /\  A  e.  B )  ->  ( C  i^i  B
)  =/=  (/) )
21necon2bi 2422 . . . 4  |-  ( ( C  i^i  B )  =  (/)  ->  -.  ( A  e.  C  /\  A  e.  B )
)
3 imnan 691 . . . 4  |-  ( ( A  e.  C  ->  -.  A  e.  B
)  <->  -.  ( A  e.  C  /\  A  e.  B ) )
42, 3sylibr 134 . . 3  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  C  ->  -.  A  e.  B )
)
54con2d 625 . 2  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  B  ->  -.  A  e.  C )
)
65impcom 125 1  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    i^i cin 3156   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-in 3163  df-nul 3451
This theorem is referenced by:  unfidisj  6983  hashunlem  10896
  Copyright terms: Public domain W3C validator