ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel Unicode version

Theorem minel 3530
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3529 . . . . 5  |-  ( ( A  e.  C  /\  A  e.  B )  ->  ( C  i^i  B
)  =/=  (/) )
21necon2bi 2433 . . . 4  |-  ( ( C  i^i  B )  =  (/)  ->  -.  ( A  e.  C  /\  A  e.  B )
)
3 imnan 692 . . . 4  |-  ( ( A  e.  C  ->  -.  A  e.  B
)  <->  -.  ( A  e.  C  /\  A  e.  B ) )
42, 3sylibr 134 . . 3  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  C  ->  -.  A  e.  B )
)
54con2d 625 . 2  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  B  ->  -.  A  e.  C )
)
65impcom 125 1  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    i^i cin 3173   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-in 3180  df-nul 3469
This theorem is referenced by:  unfidisj  7045  hashunlem  10986  ccatval2  11092
  Copyright terms: Public domain W3C validator