ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel Unicode version

Theorem minel 3470
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3469 . . . . 5  |-  ( ( A  e.  C  /\  A  e.  B )  ->  ( C  i^i  B
)  =/=  (/) )
21necon2bi 2391 . . . 4  |-  ( ( C  i^i  B )  =  (/)  ->  -.  ( A  e.  C  /\  A  e.  B )
)
3 imnan 680 . . . 4  |-  ( ( A  e.  C  ->  -.  A  e.  B
)  <->  -.  ( A  e.  C  /\  A  e.  B ) )
42, 3sylibr 133 . . 3  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  C  ->  -.  A  e.  B )
)
54con2d 614 . 2  |-  ( ( C  i^i  B )  =  (/)  ->  ( A  e.  B  ->  -.  A  e.  C )
)
65impcom 124 1  |-  ( ( A  e.  B  /\  ( C  i^i  B )  =  (/) )  ->  -.  A  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    i^i cin 3115   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410
This theorem is referenced by:  unfidisj  6887  hashunlem  10717
  Copyright terms: Public domain W3C validator