ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel GIF version

Theorem minel 3456
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3455 . . . . 5 ((𝐴𝐶𝐴𝐵) → (𝐶𝐵) ≠ ∅)
21necon2bi 2382 . . . 4 ((𝐶𝐵) = ∅ → ¬ (𝐴𝐶𝐴𝐵))
3 imnan 680 . . . 4 ((𝐴𝐶 → ¬ 𝐴𝐵) ↔ ¬ (𝐴𝐶𝐴𝐵))
42, 3sylibr 133 . . 3 ((𝐶𝐵) = ∅ → (𝐴𝐶 → ¬ 𝐴𝐵))
54con2d 614 . 2 ((𝐶𝐵) = ∅ → (𝐴𝐵 → ¬ 𝐴𝐶))
65impcom 124 1 ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1335  wcel 2128  cin 3101  c0 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-in 3108  df-nul 3396
This theorem is referenced by:  unfidisj  6868  hashunlem  10689
  Copyright terms: Public domain W3C validator