| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > minel | GIF version | ||
| Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inelcm 3511 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
| 2 | 1 | necon2bi 2422 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = ∅ → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) | 
| 3 | imnan 691 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵) ↔ ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵)) | 
| 5 | 4 | con2d 625 | . 2 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ 𝐶)) | 
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∩ cin 3156 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-in 3163 df-nul 3451 | 
| This theorem is referenced by: unfidisj 6983 hashunlem 10896 | 
| Copyright terms: Public domain | W3C validator |