Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  minel GIF version

Theorem minel 3350
 Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.)
Assertion
Ref Expression
minel ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)

Proof of Theorem minel
StepHypRef Expression
1 inelcm 3349 . . . . 5 ((𝐴𝐶𝐴𝐵) → (𝐶𝐵) ≠ ∅)
21necon2bi 2311 . . . 4 ((𝐶𝐵) = ∅ → ¬ (𝐴𝐶𝐴𝐵))
3 imnan 660 . . . 4 ((𝐴𝐶 → ¬ 𝐴𝐵) ↔ ¬ (𝐴𝐶𝐴𝐵))
42, 3sylibr 133 . . 3 ((𝐶𝐵) = ∅ → (𝐴𝐶 → ¬ 𝐴𝐵))
54con2d 590 . 2 ((𝐶𝐵) = ∅ → (𝐴𝐵 → ¬ 𝐴𝐶))
65impcom 124 1 ((𝐴𝐵 ∧ (𝐶𝐵) = ∅) → ¬ 𝐴𝐶)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   = wceq 1290   ∈ wcel 1439   ∩ cin 3001  ∅c0 3289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-v 2624  df-dif 3004  df-in 3008  df-nul 3290 This theorem is referenced by:  unfidisj  6688  hashunlem  10275
 Copyright terms: Public domain W3C validator