| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > minel | GIF version | ||
| Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelcm 3523 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
| 2 | 1 | necon2bi 2432 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = ∅ → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) |
| 3 | imnan 692 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵) ↔ ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵)) |
| 5 | 4 | con2d 625 | . 2 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ 𝐶)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∩ cin 3167 ∅c0 3462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3170 df-in 3174 df-nul 3463 |
| This theorem is referenced by: unfidisj 7031 hashunlem 10962 ccatval2 11068 |
| Copyright terms: Public domain | W3C validator |