![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > minel | GIF version |
Description: A minimum element of a class has no elements in common with the class. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
minel | ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelcm 3485 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∩ 𝐵) ≠ ∅) | |
2 | 1 | necon2bi 2402 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) = ∅ → ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) |
3 | imnan 690 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵) ↔ ¬ (𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | sylibr 134 | . . 3 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ 𝐵)) |
5 | 4 | con2d 624 | . 2 ⊢ ((𝐶 ∩ 𝐵) = ∅ → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ 𝐶)) |
6 | 5 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐶 ∩ 𝐵) = ∅) → ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∩ cin 3130 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2741 df-dif 3133 df-in 3137 df-nul 3425 |
This theorem is referenced by: unfidisj 6923 hashunlem 10786 |
Copyright terms: Public domain | W3C validator |