ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj Unicode version

Theorem unfidisj 6954
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )

Proof of Theorem unfidisj
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3298 . . 3  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
21eleq1d 2258 . 2  |-  ( w  =  (/)  ->  ( ( A  u.  w )  e.  Fin  <->  ( A  u.  (/) )  e.  Fin ) )
3 uneq2 3298 . . 3  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
43eleq1d 2258 . 2  |-  ( w  =  y  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  y )  e.  Fin ) )
5 uneq2 3298 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
65eleq1d 2258 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  e. 
Fin 
<->  ( A  u.  (
y  u.  { z } ) )  e. 
Fin ) )
7 uneq2 3298 . . 3  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
87eleq1d 2258 . 2  |-  ( w  =  B  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  B )  e.  Fin ) )
9 un0 3471 . . 3  |-  ( A  u.  (/) )  =  A
10 simp1 999 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
Fin )
119, 10eqeltrid 2276 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  (/) )  e.  Fin )
12 unass 3307 . . . 4  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
13 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  y )  e.  Fin )
14 vex 2755 . . . . . 6  |-  z  e. 
_V
1514a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  _V )
16 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  ( B  \  y ) )
1716eldifad 3155 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  B
)
18 simp3 1001 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
1918ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  i^i  B )  =  (/) )
20 minel 3499 . . . . . . . 8  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
2117, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  A )
2216eldifbd 3156 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  y )
23 ioran 753 . . . . . . 7  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
2421, 22, 23sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  ( z  e.  A  \/  z  e.  y ) )
25 elun 3291 . . . . . 6  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
2624, 25sylnibr 678 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  ( A  u.  y
) )
27 unsnfi 6951 . . . . 5  |-  ( ( ( A  u.  y
)  e.  Fin  /\  z  e.  _V  /\  -.  z  e.  ( A  u.  y ) )  -> 
( ( A  u.  y )  u.  {
z } )  e. 
Fin )
2813, 15, 26, 27syl3anc 1249 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( ( A  u.  y )  u. 
{ z } )  e.  Fin )
2912, 28eqeltrrid 2277 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin )
3029ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( ( A  u.  y )  e.  Fin  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin ) )
31 simp2 1000 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6924 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752    \ cdif 3141    u. cun 3142    i^i cin 3143    C_ wss 3144   (/)c0 3437   {csn 3610   Fincfn 6770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-1o 6445  df-er 6563  df-en 6771  df-fin 6773
This theorem is referenced by:  unfiin  6958  prfidisj  6959  tpfidisj  6960  xpfi  6962  iunfidisj  6979  hashunlem  10825  hashun  10826  fsumsplitsnun  11468  fsum2dlemstep  11483  fsumconst  11503  fprodsplitsn  11682
  Copyright terms: Public domain W3C validator