Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unfidisj | Unicode version |
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.) |
Ref | Expression |
---|---|
unfidisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq2 3275 | . . 3 | |
2 | 1 | eleq1d 2239 | . 2 |
3 | uneq2 3275 | . . 3 | |
4 | 3 | eleq1d 2239 | . 2 |
5 | uneq2 3275 | . . 3 | |
6 | 5 | eleq1d 2239 | . 2 |
7 | uneq2 3275 | . . 3 | |
8 | 7 | eleq1d 2239 | . 2 |
9 | un0 3448 | . . 3 | |
10 | simp1 992 | . . 3 | |
11 | 9, 10 | eqeltrid 2257 | . 2 |
12 | unass 3284 | . . . 4 | |
13 | simpr 109 | . . . . 5 | |
14 | vex 2733 | . . . . . 6 | |
15 | 14 | a1i 9 | . . . . 5 |
16 | simplrr 531 | . . . . . . . . 9 | |
17 | 16 | eldifad 3132 | . . . . . . . 8 |
18 | simp3 994 | . . . . . . . . 9 | |
19 | 18 | ad3antrrr 489 | . . . . . . . 8 |
20 | minel 3476 | . . . . . . . 8 | |
21 | 17, 19, 20 | syl2anc 409 | . . . . . . 7 |
22 | 16 | eldifbd 3133 | . . . . . . 7 |
23 | ioran 747 | . . . . . . 7 | |
24 | 21, 22, 23 | sylanbrc 415 | . . . . . 6 |
25 | elun 3268 | . . . . . 6 | |
26 | 24, 25 | sylnibr 672 | . . . . 5 |
27 | unsnfi 6896 | . . . . 5 | |
28 | 13, 15, 26, 27 | syl3anc 1233 | . . . 4 |
29 | 12, 28 | eqeltrrid 2258 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | simp2 993 | . 2 | |
32 | 2, 4, 6, 8, 11, 30, 31 | findcard2sd 6870 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 cvv 2730 cdif 3118 cun 3119 cin 3120 wss 3121 c0 3414 csn 3583 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: unfiin 6903 prfidisj 6904 tpfidisj 6905 xpfi 6907 iunfidisj 6923 hashunlem 10739 hashun 10740 fsumsplitsnun 11382 fsum2dlemstep 11397 fsumconst 11417 fprodsplitsn 11596 |
Copyright terms: Public domain | W3C validator |