ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj Unicode version

Theorem unfidisj 6923
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )

Proof of Theorem unfidisj
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3285 . . 3  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
21eleq1d 2246 . 2  |-  ( w  =  (/)  ->  ( ( A  u.  w )  e.  Fin  <->  ( A  u.  (/) )  e.  Fin ) )
3 uneq2 3285 . . 3  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
43eleq1d 2246 . 2  |-  ( w  =  y  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  y )  e.  Fin ) )
5 uneq2 3285 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
65eleq1d 2246 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  e. 
Fin 
<->  ( A  u.  (
y  u.  { z } ) )  e. 
Fin ) )
7 uneq2 3285 . . 3  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
87eleq1d 2246 . 2  |-  ( w  =  B  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  B )  e.  Fin ) )
9 un0 3458 . . 3  |-  ( A  u.  (/) )  =  A
10 simp1 997 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
Fin )
119, 10eqeltrid 2264 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  (/) )  e.  Fin )
12 unass 3294 . . . 4  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
13 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  y )  e.  Fin )
14 vex 2742 . . . . . 6  |-  z  e. 
_V
1514a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  _V )
16 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  ( B  \  y ) )
1716eldifad 3142 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  B
)
18 simp3 999 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
1918ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  i^i  B )  =  (/) )
20 minel 3486 . . . . . . . 8  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
2117, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  A )
2216eldifbd 3143 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  y )
23 ioran 752 . . . . . . 7  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
2421, 22, 23sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  ( z  e.  A  \/  z  e.  y ) )
25 elun 3278 . . . . . 6  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
2624, 25sylnibr 677 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  ( A  u.  y
) )
27 unsnfi 6920 . . . . 5  |-  ( ( ( A  u.  y
)  e.  Fin  /\  z  e.  _V  /\  -.  z  e.  ( A  u.  y ) )  -> 
( ( A  u.  y )  u.  {
z } )  e. 
Fin )
2813, 15, 26, 27syl3anc 1238 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( ( A  u.  y )  u. 
{ z } )  e.  Fin )
2912, 28eqeltrrid 2265 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin )
3029ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( ( A  u.  y )  e.  Fin  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin ) )
31 simp2 998 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6894 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    \ cdif 3128    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   {csn 3594   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6419  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  unfiin  6927  prfidisj  6928  tpfidisj  6929  xpfi  6931  iunfidisj  6947  hashunlem  10786  hashun  10787  fsumsplitsnun  11429  fsum2dlemstep  11444  fsumconst  11464  fprodsplitsn  11643
  Copyright terms: Public domain W3C validator