ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj Unicode version

Theorem unfidisj 7019
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )

Proof of Theorem unfidisj
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3321 . . 3  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
21eleq1d 2274 . 2  |-  ( w  =  (/)  ->  ( ( A  u.  w )  e.  Fin  <->  ( A  u.  (/) )  e.  Fin ) )
3 uneq2 3321 . . 3  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
43eleq1d 2274 . 2  |-  ( w  =  y  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  y )  e.  Fin ) )
5 uneq2 3321 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
65eleq1d 2274 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  e. 
Fin 
<->  ( A  u.  (
y  u.  { z } ) )  e. 
Fin ) )
7 uneq2 3321 . . 3  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
87eleq1d 2274 . 2  |-  ( w  =  B  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  B )  e.  Fin ) )
9 un0 3494 . . 3  |-  ( A  u.  (/) )  =  A
10 simp1 1000 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
Fin )
119, 10eqeltrid 2292 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  (/) )  e.  Fin )
12 unass 3330 . . . 4  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
13 simpr 110 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  y )  e.  Fin )
14 vex 2775 . . . . . 6  |-  z  e. 
_V
1514a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  _V )
16 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  ( B  \  y ) )
1716eldifad 3177 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  B
)
18 simp3 1002 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
1918ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  i^i  B )  =  (/) )
20 minel 3522 . . . . . . . 8  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
2117, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  A )
2216eldifbd 3178 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  y )
23 ioran 754 . . . . . . 7  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
2421, 22, 23sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  ( z  e.  A  \/  z  e.  y ) )
25 elun 3314 . . . . . 6  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
2624, 25sylnibr 679 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  ( A  u.  y
) )
27 unsnfi 7016 . . . . 5  |-  ( ( ( A  u.  y
)  e.  Fin  /\  z  e.  _V  /\  -.  z  e.  ( A  u.  y ) )  -> 
( ( A  u.  y )  u.  {
z } )  e. 
Fin )
2813, 15, 26, 27syl3anc 1250 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( ( A  u.  y )  u. 
{ z } )  e.  Fin )
2912, 28eqeltrrid 2293 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin )
3029ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( ( A  u.  y )  e.  Fin  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin ) )
31 simp2 1001 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6989 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    \ cdif 3163    u. cun 3164    i^i cin 3165    C_ wss 3166   (/)c0 3460   {csn 3633   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  unfiin  7023  prfidisj  7024  tpfidisj  7026  xpfi  7029  iunfidisj  7048  hashunlem  10949  hashun  10950  fsumsplitsnun  11730  fsum2dlemstep  11745  fsumconst  11765  fprodsplitsn  11944
  Copyright terms: Public domain W3C validator