| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 616 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 617 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2150 necon2ad 2432 necon2bd 2433 minel 3521 nlimsucg 4612 poirr2 5072 funun 5312 imadif 5348 infnlbti 7110 mkvprop 7242 addnidpig 7431 zltnle 9400 zdcle 9431 btwnnz 9449 prime 9454 icc0r 10030 fznlem 10145 qltnle 10367 bcval4 10878 seq3coll 10968 fsum3cvg 11608 fsumsplit 11637 fproddccvg 11802 fprodsplitdc 11826 bitsinv1lem 12191 2sqpwodd 12417 pockthg 12599 prmunb 12604 logbgcd1irr 15357 lgsne0 15433 |
| Copyright terms: Public domain | W3C validator |