![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2d | Unicode version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
Ref | Expression |
---|---|
con2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-in2 616 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6 33 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com23 78 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm2.01 617 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2139 necon2ad 2421 necon2bd 2422 minel 3509 nlimsucg 4599 poirr2 5059 funun 5299 imadif 5335 infnlbti 7087 mkvprop 7219 addnidpig 7398 zltnle 9366 zdcle 9396 btwnnz 9414 prime 9419 icc0r 9995 fznlem 10110 qltnle 10316 bcval4 10826 seq3coll 10916 fsum3cvg 11524 fsumsplit 11553 fproddccvg 11718 fprodsplitdc 11742 2sqpwodd 12317 pockthg 12498 prmunb 12503 logbgcd1irr 15140 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |