| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 616 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 617 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2142 necon2ad 2424 necon2bd 2425 minel 3513 nlimsucg 4603 poirr2 5063 funun 5303 imadif 5339 infnlbti 7101 mkvprop 7233 addnidpig 7420 zltnle 9389 zdcle 9419 btwnnz 9437 prime 9442 icc0r 10018 fznlem 10133 qltnle 10350 bcval4 10861 seq3coll 10951 fsum3cvg 11560 fsumsplit 11589 fproddccvg 11754 fprodsplitdc 11778 bitsinv1lem 12143 2sqpwodd 12369 pockthg 12551 prmunb 12556 logbgcd1irr 15287 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |