ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d Unicode version

Theorem con2d 625
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1  |-  ( ph  ->  ( ps  ->  -.  ch ) )
Assertion
Ref Expression
con2d  |-  ( ph  ->  ( ch  ->  -.  ps ) )

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4  |-  ( ph  ->  ( ps  ->  -.  ch ) )
2 ax-in2 616 . . . 4  |-  ( -. 
ch  ->  ( ch  ->  -. 
ps ) )
31, 2syl6 33 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  -.  ps )
) )
43com23 78 . 2  |-  ( ph  ->  ( ch  ->  ( ps  ->  -.  ps )
) )
5 pm2.01 617 . 2  |-  ( ( ps  ->  -.  ps )  ->  -.  ps )
64, 5syl6 33 1  |-  ( ph  ->  ( ch  ->  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2d  626  con3d  632  pm3.2im  638  con2  644  pm2.65  661  con1biimdc  875  exists2  2152  necon2ad  2434  necon2bd  2435  minel  3526  nlimsucg  4622  poirr2  5084  funun  5324  imadif  5363  infnlbti  7143  mkvprop  7275  addnidpig  7469  zltnle  9438  zdcle  9469  btwnnz  9487  prime  9492  icc0r  10068  fznlem  10183  qltnle  10408  bcval4  10919  seq3coll  11009  swrd0g  11136  fsum3cvg  11764  fsumsplit  11793  fproddccvg  11958  fprodsplitdc  11982  bitsinv1lem  12347  2sqpwodd  12573  pockthg  12755  prmunb  12760  logbgcd1irr  15514  lgsne0  15590
  Copyright terms: Public domain W3C validator