![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2d | Unicode version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
Ref | Expression |
---|---|
con2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-in2 587 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6 33 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com23 78 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm2.01 588 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 586 ax-in2 587 |
This theorem is referenced by: mt2d 597 con3d 603 pm3.2im 609 con2 615 pm2.65 631 con1biimdc 839 exists2 2070 necon2ad 2337 necon2bd 2338 minel 3388 nlimsucg 4439 poirr2 4887 funun 5123 imadif 5159 infnlbti 6863 mkvprop 6979 addnidpig 7086 zltnle 8998 zdcle 9025 btwnnz 9043 prime 9048 icc0r 9596 fznlem 9708 qltnle 9910 bcval4 10385 seq3coll 10472 fsum3cvg 11032 fsumsplit 11062 2sqpwodd 11693 |
Copyright terms: Public domain | W3C validator |