| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 618 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 619 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mt2d 628 con3d 634 pm3.2im 640 con2 646 pm2.65 663 con1biimdc 878 exists2 2175 necon2ad 2457 necon2bd 2458 minel 3553 nlimsucg 4657 poirr2 5120 funun 5361 imadif 5400 infnlbti 7189 mkvprop 7321 addnidpig 7519 zltnle 9488 zdcle 9519 btwnnz 9537 prime 9542 icc0r 10118 fznlem 10233 qltnle 10458 bcval4 10969 seq3coll 11059 swrd0g 11187 fsum3cvg 11884 fsumsplit 11913 fproddccvg 12078 fprodsplitdc 12102 bitsinv1lem 12467 2sqpwodd 12693 pockthg 12875 prmunb 12880 logbgcd1irr 15635 lgsne0 15711 |
| Copyright terms: Public domain | W3C validator |