| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) | 
| Ref | Expression | 
|---|---|
| con2d.1 | 
 | 
| Ref | Expression | 
|---|---|
| con2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con2d.1 | 
. . . 4
 | |
| 2 | ax-in2 616 | 
. . . 4
 | |
| 3 | 1, 2 | syl6 33 | 
. . 3
 | 
| 4 | 3 | com23 78 | 
. 2
 | 
| 5 | pm2.01 617 | 
. 2
 | |
| 6 | 4, 5 | syl6 33 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2142 necon2ad 2424 necon2bd 2425 minel 3512 nlimsucg 4602 poirr2 5062 funun 5302 imadif 5338 infnlbti 7092 mkvprop 7224 addnidpig 7403 zltnle 9372 zdcle 9402 btwnnz 9420 prime 9425 icc0r 10001 fznlem 10116 qltnle 10333 bcval4 10844 seq3coll 10934 fsum3cvg 11543 fsumsplit 11572 fproddccvg 11737 fprodsplitdc 11761 2sqpwodd 12344 pockthg 12526 prmunb 12531 logbgcd1irr 15203 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |