| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 616 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 617 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2150 necon2ad 2432 necon2bd 2433 minel 3521 nlimsucg 4613 poirr2 5074 funun 5314 imadif 5353 infnlbti 7127 mkvprop 7259 addnidpig 7448 zltnle 9417 zdcle 9448 btwnnz 9466 prime 9471 icc0r 10047 fznlem 10162 qltnle 10384 bcval4 10895 seq3coll 10985 fsum3cvg 11660 fsumsplit 11689 fproddccvg 11854 fprodsplitdc 11878 bitsinv1lem 12243 2sqpwodd 12469 pockthg 12651 prmunb 12656 logbgcd1irr 15410 lgsne0 15486 |
| Copyright terms: Public domain | W3C validator |