![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2d | Unicode version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
Ref | Expression |
---|---|
con2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-in2 615 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6 33 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com23 78 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm2.01 616 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mt2d 625 con3d 631 pm3.2im 637 con2 643 pm2.65 659 con1biimdc 873 exists2 2123 necon2ad 2404 necon2bd 2405 minel 3484 nlimsucg 4565 poirr2 5021 funun 5260 imadif 5296 infnlbti 7024 mkvprop 7155 addnidpig 7334 zltnle 9298 zdcle 9328 btwnnz 9346 prime 9351 icc0r 9925 fznlem 10040 qltnle 10245 bcval4 10731 seq3coll 10821 fsum3cvg 11385 fsumsplit 11414 fproddccvg 11579 fprodsplitdc 11603 2sqpwodd 12175 pockthg 12354 prmunb 12359 logbgcd1irr 14355 lgsne0 14409 |
Copyright terms: Public domain | W3C validator |