| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 616 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 617 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2142 necon2ad 2424 necon2bd 2425 minel 3513 nlimsucg 4603 poirr2 5063 funun 5303 imadif 5339 infnlbti 7096 mkvprop 7228 addnidpig 7408 zltnle 9377 zdcle 9407 btwnnz 9425 prime 9430 icc0r 10006 fznlem 10121 qltnle 10338 bcval4 10849 seq3coll 10939 fsum3cvg 11548 fsumsplit 11577 fproddccvg 11742 fprodsplitdc 11766 bitsinv1lem 12131 2sqpwodd 12357 pockthg 12539 prmunb 12544 logbgcd1irr 15250 lgsne0 15326 |
| Copyright terms: Public domain | W3C validator |