| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 |
|
| Ref | Expression |
|---|---|
| con2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 |
. . . 4
| |
| 2 | ax-in2 616 |
. . . 4
| |
| 3 | 1, 2 | syl6 33 |
. . 3
|
| 4 | 3 | com23 78 |
. 2
|
| 5 | pm2.01 617 |
. 2
| |
| 6 | 4, 5 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 661 con1biimdc 875 exists2 2152 necon2ad 2434 necon2bd 2435 minel 3526 nlimsucg 4622 poirr2 5084 funun 5324 imadif 5363 infnlbti 7143 mkvprop 7275 addnidpig 7469 zltnle 9438 zdcle 9469 btwnnz 9487 prime 9492 icc0r 10068 fznlem 10183 qltnle 10408 bcval4 10919 seq3coll 11009 swrd0g 11136 fsum3cvg 11764 fsumsplit 11793 fproddccvg 11958 fprodsplitdc 11982 bitsinv1lem 12347 2sqpwodd 12573 pockthg 12755 prmunb 12760 logbgcd1irr 15514 lgsne0 15590 |
| Copyright terms: Public domain | W3C validator |