Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mo4f | Unicode version |
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.) |
Ref | Expression |
---|---|
mo4f.1 | |
mo4f.2 |
Ref | Expression |
---|---|
mo4f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . . 3 | |
2 | 1 | mo3h 2072 | . 2 |
3 | mo4f.1 | . . . . . 6 | |
4 | mo4f.2 | . . . . . 6 | |
5 | 3, 4 | sbie 1784 | . . . . 5 |
6 | 5 | anbi2i 454 | . . . 4 |
7 | 6 | imbi1i 237 | . . 3 |
8 | 7 | 2albii 1464 | . 2 |
9 | 2, 8 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wnf 1453 wsb 1755 wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: mo4 2080 mob2 2910 moop2 4236 dffun4f 5214 |
Copyright terms: Public domain | W3C validator |