ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4f Unicode version

Theorem mo4f 2098
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.)
Hypotheses
Ref Expression
mo4f.1  |-  F/ x ps
mo4f.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
mo4f  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem mo4f
StepHypRef Expression
1 ax-17 1537 . . 3  |-  ( ph  ->  A. y ph )
21mo3h 2091 . 2  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
3 mo4f.1 . . . . . 6  |-  F/ x ps
4 mo4f.2 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
53, 4sbie 1802 . . . . 5  |-  ( [ y  /  x ] ph 
<->  ps )
65anbi2i 457 . . . 4  |-  ( (
ph  /\  [ y  /  x ] ph )  <->  (
ph  /\  ps )
)
76imbi1i 238 . . 3  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  <->  ( ( ph  /\  ps )  ->  x  =  y )
)
872albii 1482 . 2  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x A. y ( ( ph  /\  ps )  ->  x  =  y ) )
92, 8bitri 184 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   F/wnf 1471   [wsb 1773   E*wmo 2039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042
This theorem is referenced by:  mo4  2099  mob2  2932  moop2  4266  dffun4f  5247
  Copyright terms: Public domain W3C validator