![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | albii 1480 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | albii 1480 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mor 2078 mo4f 2096 moanim 2110 2eu4 2129 ralcomf 2648 raliunxp 4780 cnvsym 5024 intasym 5025 intirr 5027 codir 5029 qfto 5030 dffun4 5239 dffun4f 5244 funcnveq 5291 fun11 5295 fununi 5296 mpo2eqb 5998 addnq0mo 7460 mulnq0mo 7461 addsrmo 7756 mulsrmo 7757 |
Copyright terms: Public domain | W3C validator |