| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| 2albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 |
. . 3
| |
| 2 | 1 | albii 1516 |
. 2
|
| 3 | 2 | albii 1516 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2120 mo4f 2138 moanim 2152 2eu4 2171 ralcomf 2692 raliunxp 4863 cnvsym 5112 intasym 5113 intirr 5115 codir 5117 qfto 5118 dffun4 5329 dffun4f 5334 funcnveq 5384 fun11 5388 fununi 5389 mpo2eqb 6114 addnq0mo 7634 mulnq0mo 7635 addsrmo 7930 mulsrmo 7931 |
| Copyright terms: Public domain | W3C validator |