ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii Unicode version

Theorem 2albii 1517
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2albii  |-  ( A. x A. y ph  <->  A. x A. y ps )

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3  |-  ( ph  <->  ps )
21albii 1516 . 2  |-  ( A. y ph  <->  A. y ps )
32albii 1516 1  |-  ( A. x A. y ph  <->  A. x A. y ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2120  mo4f  2138  moanim  2152  2eu4  2171  ralcomf  2692  raliunxp  4863  cnvsym  5112  intasym  5113  intirr  5115  codir  5117  qfto  5118  dffun4  5329  dffun4f  5334  funcnveq  5384  fun11  5388  fununi  5389  mpo2eqb  6114  addnq0mo  7634  mulnq0mo  7635  addsrmo  7930  mulsrmo  7931
  Copyright terms: Public domain W3C validator