| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| 2albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 |
. . 3
| |
| 2 | 1 | albii 1494 |
. 2
|
| 3 | 2 | albii 1494 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2098 mo4f 2116 moanim 2130 2eu4 2149 ralcomf 2669 raliunxp 4837 cnvsym 5085 intasym 5086 intirr 5088 codir 5090 qfto 5091 dffun4 5301 dffun4f 5306 funcnveq 5356 fun11 5360 fununi 5361 mpo2eqb 6078 addnq0mo 7595 mulnq0mo 7596 addsrmo 7891 mulsrmo 7892 |
| Copyright terms: Public domain | W3C validator |