![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | albii 1481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | albii 1481 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mor 2084 mo4f 2102 moanim 2116 2eu4 2135 ralcomf 2655 raliunxp 4803 cnvsym 5049 intasym 5050 intirr 5052 codir 5054 qfto 5055 dffun4 5265 dffun4f 5270 funcnveq 5317 fun11 5321 fununi 5322 mpo2eqb 6028 addnq0mo 7507 mulnq0mo 7508 addsrmo 7803 mulsrmo 7804 |
Copyright terms: Public domain | W3C validator |