| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| 2albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 |
. . 3
| |
| 2 | 1 | albii 1493 |
. 2
|
| 3 | 2 | albii 1493 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2096 mo4f 2114 moanim 2128 2eu4 2147 ralcomf 2667 raliunxp 4820 cnvsym 5067 intasym 5068 intirr 5070 codir 5072 qfto 5073 dffun4 5283 dffun4f 5288 funcnveq 5338 fun11 5342 fununi 5343 mpo2eqb 6057 addnq0mo 7562 mulnq0mo 7563 addsrmo 7858 mulsrmo 7859 |
| Copyright terms: Public domain | W3C validator |