Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 |
Ref | Expression |
---|---|
2albii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 | |
2 | 1 | albii 1463 | . 2 |
3 | 2 | albii 1463 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mor 2061 mo4f 2079 moanim 2093 2eu4 2112 ralcomf 2631 raliunxp 4752 cnvsym 4994 intasym 4995 intirr 4997 codir 4999 qfto 5000 dffun4 5209 dffun4f 5214 funcnveq 5261 fun11 5265 fununi 5266 mpo2eqb 5962 addnq0mo 7409 mulnq0mo 7410 addsrmo 7705 mulsrmo 7706 |
Copyright terms: Public domain | W3C validator |