ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii Unicode version

Theorem 2albii 1495
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2albii  |-  ( A. x A. y ph  <->  A. x A. y ps )

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3  |-  ( ph  <->  ps )
21albii 1494 . 2  |-  ( A. y ph  <->  A. y ps )
32albii 1494 1  |-  ( A. x A. y ph  <->  A. x A. y ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2098  mo4f  2116  moanim  2130  2eu4  2149  ralcomf  2669  raliunxp  4837  cnvsym  5085  intasym  5086  intirr  5088  codir  5090  qfto  5091  dffun4  5301  dffun4f  5306  funcnveq  5356  fun11  5360  fununi  5361  mpo2eqb  6078  addnq0mo  7595  mulnq0mo  7596  addsrmo  7891  mulsrmo  7892
  Copyright terms: Public domain W3C validator