| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | Unicode version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| 2albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 |
. . 3
| |
| 2 | 1 | albii 1493 |
. 2
|
| 3 | 2 | albii 1493 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2096 mo4f 2114 moanim 2128 2eu4 2147 ralcomf 2667 raliunxp 4819 cnvsym 5066 intasym 5067 intirr 5069 codir 5071 qfto 5072 dffun4 5282 dffun4f 5287 funcnveq 5337 fun11 5341 fununi 5342 mpo2eqb 6055 addnq0mo 7560 mulnq0mo 7561 addsrmo 7856 mulsrmo 7857 |
| Copyright terms: Public domain | W3C validator |