ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii Unicode version

Theorem 2albii 1485
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
2albii  |-  ( A. x A. y ph  <->  A. x A. y ps )

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3  |-  ( ph  <->  ps )
21albii 1484 . 2  |-  ( A. y ph  <->  A. y ps )
32albii 1484 1  |-  ( A. x A. y ph  <->  A. x A. y ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2087  mo4f  2105  moanim  2119  2eu4  2138  ralcomf  2658  raliunxp  4808  cnvsym  5054  intasym  5055  intirr  5057  codir  5059  qfto  5060  dffun4  5270  dffun4f  5275  funcnveq  5322  fun11  5326  fununi  5327  mpo2eqb  6036  addnq0mo  7531  mulnq0mo  7532  addsrmo  7827  mulsrmo  7828
  Copyright terms: Public domain W3C validator