ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4f GIF version

Theorem mo4f 2079
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.)
Hypotheses
Ref Expression
mo4f.1 𝑥𝜓
mo4f.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
mo4f (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem mo4f
StepHypRef Expression
1 ax-17 1519 . . 3 (𝜑 → ∀𝑦𝜑)
21mo3h 2072 . 2 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
3 mo4f.1 . . . . . 6 𝑥𝜓
4 mo4f.2 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 1784 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
65anbi2i 454 . . . 4 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓))
76imbi1i 237 . . 3 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝑦))
872albii 1464 . 2 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
92, 8bitri 183 1 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wnf 1453  [wsb 1755  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  mo4  2080  mob2  2910  moop2  4236  dffun4f  5214
  Copyright terms: Public domain W3C validator