ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4 Unicode version

Theorem mo4 2139
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
mo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
mo4  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem mo4
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x ps
2 mo4.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2mo4f 2138 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  eu4  2140  rmo4  2996  dffun5r  5329  dffun6f  5330  fun11  5387  brprcneu  5619  dff13  5891  mpofun  6105  caovimo  6198  th3qlem1  6782  exmidmotap  7443  addnq0mo  7630  mulnq0mo  7631  addsrmo  7926  mulsrmo  7927  summodc  11889  prodmodc  12084  limcimo  15333
  Copyright terms: Public domain W3C validator