ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo4 Unicode version

Theorem mo4 2106
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
mo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
mo4  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem mo4
StepHypRef Expression
1 nfv 1542 . 2  |-  F/ x ps
2 mo4.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2mo4f 2105 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
ps )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  eu4  2107  rmo4  2957  dffun5r  5271  dffun6f  5272  fun11  5326  brprcneu  5554  dff13  5818  mpofun  6028  caovimo  6121  th3qlem1  6705  exmidmotap  7344  addnq0mo  7531  mulnq0mo  7532  addsrmo  7827  mulsrmo  7828  summodc  11565  prodmodc  11760  limcimo  14985
  Copyright terms: Public domain W3C validator