| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun4f | Unicode version | ||
| Description: Definition of function like dffun4 5269 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.) |
| Ref | Expression |
|---|---|
| dffun4f.1 |
|
| dffun4f.2 |
|
| dffun4f.3 |
|
| Ref | Expression |
|---|---|
| dffun4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun4f.1 |
. . 3
| |
| 2 | dffun4f.2 |
. . 3
| |
| 3 | 1, 2 | dffun6f 5271 |
. 2
|
| 4 | nfcv 2339 |
. . . . . . 7
| |
| 5 | nfcv 2339 |
. . . . . . 7
| |
| 6 | 4, 2, 5 | nfbr 4079 |
. . . . . 6
|
| 7 | breq2 4037 |
. . . . . 6
| |
| 8 | 6, 7 | mo4f 2105 |
. . . . 5
|
| 9 | nfv 1542 |
. . . . . . 7
| |
| 10 | nfcv 2339 |
. . . . . . . . . 10
| |
| 11 | dffun4f.3 |
. . . . . . . . . 10
| |
| 12 | nfcv 2339 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | nfbr 4079 |
. . . . . . . . 9
|
| 14 | nfcv 2339 |
. . . . . . . . . 10
| |
| 15 | 10, 11, 14 | nfbr 4079 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1579 |
. . . . . . . 8
|
| 17 | nfv 1542 |
. . . . . . . 8
| |
| 18 | 16, 17 | nfim 1586 |
. . . . . . 7
|
| 19 | breq2 4037 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2d 464 |
. . . . . . . 8
|
| 21 | equequ2 1727 |
. . . . . . . 8
| |
| 22 | 20, 21 | imbi12d 234 |
. . . . . . 7
|
| 23 | 9, 18, 22 | cbval 1768 |
. . . . . 6
|
| 24 | 23 | albii 1484 |
. . . . 5
|
| 25 | 8, 24 | bitr4i 187 |
. . . 4
|
| 26 | 25 | albii 1484 |
. . 3
|
| 27 | 26 | anbi2i 457 |
. 2
|
| 28 | df-br 4034 |
. . . . . . 7
| |
| 29 | df-br 4034 |
. . . . . . 7
| |
| 30 | 28, 29 | anbi12i 460 |
. . . . . 6
|
| 31 | 30 | imbi1i 238 |
. . . . 5
|
| 32 | 31 | 2albii 1485 |
. . . 4
|
| 33 | 32 | albii 1484 |
. . 3
|
| 34 | 33 | anbi2i 457 |
. 2
|
| 35 | 3, 27, 34 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-cnv 4671 df-co 4672 df-fun 5260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |