Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun4f | Unicode version |
Description: Definition of function like dffun4 5199 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.) |
Ref | Expression |
---|---|
dffun4f.1 | |
dffun4f.2 | |
dffun4f.3 |
Ref | Expression |
---|---|
dffun4f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun4f.1 | . . 3 | |
2 | dffun4f.2 | . . 3 | |
3 | 1, 2 | dffun6f 5201 | . 2 |
4 | nfcv 2308 | . . . . . . 7 | |
5 | nfcv 2308 | . . . . . . 7 | |
6 | 4, 2, 5 | nfbr 4028 | . . . . . 6 |
7 | breq2 3986 | . . . . . 6 | |
8 | 6, 7 | mo4f 2074 | . . . . 5 |
9 | nfv 1516 | . . . . . . 7 | |
10 | nfcv 2308 | . . . . . . . . . 10 | |
11 | dffun4f.3 | . . . . . . . . . 10 | |
12 | nfcv 2308 | . . . . . . . . . 10 | |
13 | 10, 11, 12 | nfbr 4028 | . . . . . . . . 9 |
14 | nfcv 2308 | . . . . . . . . . 10 | |
15 | 10, 11, 14 | nfbr 4028 | . . . . . . . . 9 |
16 | 13, 15 | nfan 1553 | . . . . . . . 8 |
17 | nfv 1516 | . . . . . . . 8 | |
18 | 16, 17 | nfim 1560 | . . . . . . 7 |
19 | breq2 3986 | . . . . . . . . 9 | |
20 | 19 | anbi2d 460 | . . . . . . . 8 |
21 | equequ2 1701 | . . . . . . . 8 | |
22 | 20, 21 | imbi12d 233 | . . . . . . 7 |
23 | 9, 18, 22 | cbval 1742 | . . . . . 6 |
24 | 23 | albii 1458 | . . . . 5 |
25 | 8, 24 | bitr4i 186 | . . . 4 |
26 | 25 | albii 1458 | . . 3 |
27 | 26 | anbi2i 453 | . 2 |
28 | df-br 3983 | . . . . . . 7 | |
29 | df-br 3983 | . . . . . . 7 | |
30 | 28, 29 | anbi12i 456 | . . . . . 6 |
31 | 30 | imbi1i 237 | . . . . 5 |
32 | 31 | 2albii 1459 | . . . 4 |
33 | 32 | albii 1458 | . . 3 |
34 | 33 | anbi2i 453 | . 2 |
35 | 3, 27, 34 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wmo 2015 wcel 2136 wnfc 2295 cop 3579 class class class wbr 3982 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |