| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun4f | Unicode version | ||
| Description: Definition of function like dffun4 5301 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.) |
| Ref | Expression |
|---|---|
| dffun4f.1 |
|
| dffun4f.2 |
|
| dffun4f.3 |
|
| Ref | Expression |
|---|---|
| dffun4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun4f.1 |
. . 3
| |
| 2 | dffun4f.2 |
. . 3
| |
| 3 | 1, 2 | dffun6f 5303 |
. 2
|
| 4 | nfcv 2350 |
. . . . . . 7
| |
| 5 | nfcv 2350 |
. . . . . . 7
| |
| 6 | 4, 2, 5 | nfbr 4106 |
. . . . . 6
|
| 7 | breq2 4063 |
. . . . . 6
| |
| 8 | 6, 7 | mo4f 2116 |
. . . . 5
|
| 9 | nfv 1552 |
. . . . . . 7
| |
| 10 | nfcv 2350 |
. . . . . . . . . 10
| |
| 11 | dffun4f.3 |
. . . . . . . . . 10
| |
| 12 | nfcv 2350 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | nfbr 4106 |
. . . . . . . . 9
|
| 14 | nfcv 2350 |
. . . . . . . . . 10
| |
| 15 | 10, 11, 14 | nfbr 4106 |
. . . . . . . . 9
|
| 16 | 13, 15 | nfan 1589 |
. . . . . . . 8
|
| 17 | nfv 1552 |
. . . . . . . 8
| |
| 18 | 16, 17 | nfim 1596 |
. . . . . . 7
|
| 19 | breq2 4063 |
. . . . . . . . 9
| |
| 20 | 19 | anbi2d 464 |
. . . . . . . 8
|
| 21 | equequ2 1737 |
. . . . . . . 8
| |
| 22 | 20, 21 | imbi12d 234 |
. . . . . . 7
|
| 23 | 9, 18, 22 | cbval 1778 |
. . . . . 6
|
| 24 | 23 | albii 1494 |
. . . . 5
|
| 25 | 8, 24 | bitr4i 187 |
. . . 4
|
| 26 | 25 | albii 1494 |
. . 3
|
| 27 | 26 | anbi2i 457 |
. 2
|
| 28 | df-br 4060 |
. . . . . . 7
| |
| 29 | df-br 4060 |
. . . . . . 7
| |
| 30 | 28, 29 | anbi12i 460 |
. . . . . 6
|
| 31 | 30 | imbi1i 238 |
. . . . 5
|
| 32 | 31 | 2albii 1495 |
. . . 4
|
| 33 | 32 | albii 1494 |
. . 3
|
| 34 | 33 | anbi2i 457 |
. 2
|
| 35 | 3, 27, 34 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-cnv 4701 df-co 4702 df-fun 5292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |