| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moop2 | Unicode version | ||
| Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| moop2.1 |
|
| Ref | Expression |
|---|---|
| moop2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2223 |
. . . 4
| |
| 2 | moop2.1 |
. . . . . 6
| |
| 3 | vex 2774 |
. . . . . 6
| |
| 4 | 2, 3 | opth 4280 |
. . . . 5
|
| 5 | 4 | simprbi 275 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | gen2 1472 |
. 2
|
| 8 | nfcsb1v 3125 |
. . . . 5
| |
| 9 | nfcv 2347 |
. . . . 5
| |
| 10 | 8, 9 | nfop 3834 |
. . . 4
|
| 11 | 10 | nfeq2 2359 |
. . 3
|
| 12 | csbeq1a 3101 |
. . . . 5
| |
| 13 | id 19 |
. . . . 5
| |
| 14 | 12, 13 | opeq12d 3826 |
. . . 4
|
| 15 | 14 | eqeq2d 2216 |
. . 3
|
| 16 | 11, 15 | mo4f 2113 |
. 2
|
| 17 | 7, 16 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |