| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moop2 | Unicode version | ||
| Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| moop2.1 |
|
| Ref | Expression |
|---|---|
| moop2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2225 |
. . . 4
| |
| 2 | moop2.1 |
. . . . . 6
| |
| 3 | vex 2776 |
. . . . . 6
| |
| 4 | 2, 3 | opth 4294 |
. . . . 5
|
| 5 | 4 | simprbi 275 |
. . . 4
|
| 6 | 1, 5 | syl 14 |
. . 3
|
| 7 | 6 | gen2 1474 |
. 2
|
| 8 | nfcsb1v 3130 |
. . . . 5
| |
| 9 | nfcv 2349 |
. . . . 5
| |
| 10 | 8, 9 | nfop 3844 |
. . . 4
|
| 11 | 10 | nfeq2 2361 |
. . 3
|
| 12 | csbeq1a 3106 |
. . . . 5
| |
| 13 | id 19 |
. . . . 5
| |
| 14 | 12, 13 | opeq12d 3836 |
. . . 4
|
| 15 | 14 | eqeq2d 2218 |
. . 3
|
| 16 | 11, 15 | mo4f 2115 |
. 2
|
| 17 | 7, 16 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |