ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moop2 Unicode version

Theorem moop2 4168
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1  |-  B  e. 
_V
Assertion
Ref Expression
moop2  |-  E* x  A  =  <. B ,  x >.
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem moop2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2156 . . . 4  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
2 moop2.1 . . . . . 6  |-  B  e. 
_V
3 vex 2684 . . . . . 6  |-  x  e. 
_V
42, 3opth 4154 . . . . 5  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  <->  ( B  =  [_ y  /  x ]_ B  /\  x  =  y )
)
54simprbi 273 . . . 4  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  ->  x  =  y )
61, 5syl 14 . . 3  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  x  =  y )
76gen2 1426 . 2  |-  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y )
8 nfcsb1v 3030 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
9 nfcv 2279 . . . . 5  |-  F/_ x
y
108, 9nfop 3716 . . . 4  |-  F/_ x <. [_ y  /  x ]_ B ,  y >.
1110nfeq2 2291 . . 3  |-  F/ x  A  =  <. [_ y  /  x ]_ B , 
y >.
12 csbeq1a 3007 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
13 id 19 . . . . 5  |-  ( x  =  y  ->  x  =  y )
1412, 13opeq12d 3708 . . . 4  |-  ( x  =  y  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
1514eqeq2d 2149 . . 3  |-  ( x  =  y  ->  ( A  =  <. B ,  x >. 
<->  A  =  <. [_ y  /  x ]_ B , 
y >. ) )
1611, 15mo4f 2057 . 2  |-  ( E* x  A  =  <. B ,  x >.  <->  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y ) )
177, 16mpbir 145 1  |-  E* x  A  =  <. B ,  x >.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   E*wmo 1998   _Vcvv 2681   [_csb 2998   <.cop 3525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator