Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moop2 | Unicode version |
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
moop2.1 |
Ref | Expression |
---|---|
moop2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2184 | . . . 4 | |
2 | moop2.1 | . . . . . 6 | |
3 | vex 2729 | . . . . . 6 | |
4 | 2, 3 | opth 4215 | . . . . 5 |
5 | 4 | simprbi 273 | . . . 4 |
6 | 1, 5 | syl 14 | . . 3 |
7 | 6 | gen2 1438 | . 2 |
8 | nfcsb1v 3078 | . . . . 5 | |
9 | nfcv 2308 | . . . . 5 | |
10 | 8, 9 | nfop 3774 | . . . 4 |
11 | 10 | nfeq2 2320 | . . 3 |
12 | csbeq1a 3054 | . . . . 5 | |
13 | id 19 | . . . . 5 | |
14 | 12, 13 | opeq12d 3766 | . . . 4 |
15 | 14 | eqeq2d 2177 | . . 3 |
16 | 11, 15 | mo4f 2074 | . 2 |
17 | 7, 16 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wmo 2015 wcel 2136 cvv 2726 csb 3045 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |