ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moop2 Unicode version

Theorem moop2 4253
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1  |-  B  e. 
_V
Assertion
Ref Expression
moop2  |-  E* x  A  =  <. B ,  x >.
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem moop2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2196 . . . 4  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
2 moop2.1 . . . . . 6  |-  B  e. 
_V
3 vex 2742 . . . . . 6  |-  x  e. 
_V
42, 3opth 4239 . . . . 5  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  <->  ( B  =  [_ y  /  x ]_ B  /\  x  =  y )
)
54simprbi 275 . . . 4  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  ->  x  =  y )
61, 5syl 14 . . 3  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  x  =  y )
76gen2 1450 . 2  |-  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y )
8 nfcsb1v 3092 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
9 nfcv 2319 . . . . 5  |-  F/_ x
y
108, 9nfop 3796 . . . 4  |-  F/_ x <. [_ y  /  x ]_ B ,  y >.
1110nfeq2 2331 . . 3  |-  F/ x  A  =  <. [_ y  /  x ]_ B , 
y >.
12 csbeq1a 3068 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
13 id 19 . . . . 5  |-  ( x  =  y  ->  x  =  y )
1412, 13opeq12d 3788 . . . 4  |-  ( x  =  y  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
1514eqeq2d 2189 . . 3  |-  ( x  =  y  ->  ( A  =  <. B ,  x >. 
<->  A  =  <. [_ y  /  x ]_ B , 
y >. ) )
1611, 15mo4f 2086 . 2  |-  ( E* x  A  =  <. B ,  x >.  <->  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y ) )
177, 16mpbir 146 1  |-  E* x  A  =  <. B ,  x >.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    = wceq 1353   E*wmo 2027    e. wcel 2148   _Vcvv 2739   [_csb 3059   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator