ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobidv Unicode version

Theorem mobidv 1984
Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
mobidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mobidv  |-  ( ph  ->  ( E* x ps  <->  E* x ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem mobidv
StepHypRef Expression
1 nfv 1466 . 2  |-  F/ x ph
2 mobidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2mobid 1983 1  |-  ( ph  ->  ( E* x ps  <->  E* x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   E*wmo 1949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-eu 1951  df-mo 1952
This theorem is referenced by:  mobii  1985  mosubopt  4503  dffun6f  5028  funmo  5030  1stconst  5986  2ndconst  5987
  Copyright terms: Public domain W3C validator