ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo Unicode version

Theorem funmo 5305
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo  |-  ( Fun 
F  ->  E* y  A F y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funmo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dffun6 5304 . . . . . 6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
21simplbi 274 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
3 brrelex 4733 . . . . . 6  |-  ( ( Rel  F  /\  A F y )  ->  A  e.  _V )
43ex 115 . . . . 5  |-  ( Rel 
F  ->  ( A F y  ->  A  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( Fun 
F  ->  ( A F y  ->  A  e.  _V ) )
65ancrd 326 . . 3  |-  ( Fun 
F  ->  ( A F y  ->  ( A  e.  _V  /\  A F y ) ) )
76alrimiv 1898 . 2  |-  ( Fun 
F  ->  A. y
( A F y  ->  ( A  e. 
_V  /\  A F
y ) ) )
8 breq1 4062 . . . . . . 7  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
98mobidv 2091 . . . . . 6  |-  ( x  =  A  ->  ( E* y  x F
y  <->  E* y  A F y ) )
109imbi2d 230 . . . . 5  |-  ( x  =  A  ->  (
( Fun  F  ->  E* y  x F y )  <->  ( Fun  F  ->  E* y  A F y ) ) )
111simprbi 275 . . . . . 6  |-  ( Fun 
F  ->  A. x E* y  x F
y )
121119.21bi 1582 . . . . 5  |-  ( Fun 
F  ->  E* y  x F y )
1310, 12vtoclg 2838 . . . 4  |-  ( A  e.  _V  ->  ( Fun  F  ->  E* y  A F y ) )
1413com12 30 . . 3  |-  ( Fun 
F  ->  ( A  e.  _V  ->  E* y  A F y ) )
15 moanimv 2131 . . 3  |-  ( E* y ( A  e. 
_V  /\  A F
y )  <->  ( A  e.  _V  ->  E* y  A F y ) )
1614, 15sylibr 134 . 2  |-  ( Fun 
F  ->  E* y
( A  e.  _V  /\  A F y ) )
17 moim 2120 . 2  |-  ( A. y ( A F y  ->  ( A  e.  _V  /\  A F y ) )  -> 
( E* y ( A  e.  _V  /\  A F y )  ->  E* y  A F
y ) )
187, 16, 17sylc 62 1  |-  ( Fun 
F  ->  E* y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E*wmo 2056    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  funeu  5315  funco  5330  fununmo  5335  imadif  5373  fneu  5399  dff3im  5748  shftfn  11250
  Copyright terms: Public domain W3C validator