ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo Unicode version

Theorem funmo 5333
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo  |-  ( Fun 
F  ->  E* y  A F y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funmo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dffun6 5332 . . . . . 6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
21simplbi 274 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
3 brrelex 4759 . . . . . 6  |-  ( ( Rel  F  /\  A F y )  ->  A  e.  _V )
43ex 115 . . . . 5  |-  ( Rel 
F  ->  ( A F y  ->  A  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( Fun 
F  ->  ( A F y  ->  A  e.  _V ) )
65ancrd 326 . . 3  |-  ( Fun 
F  ->  ( A F y  ->  ( A  e.  _V  /\  A F y ) ) )
76alrimiv 1920 . 2  |-  ( Fun 
F  ->  A. y
( A F y  ->  ( A  e. 
_V  /\  A F
y ) ) )
8 breq1 4086 . . . . . . 7  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
98mobidv 2113 . . . . . 6  |-  ( x  =  A  ->  ( E* y  x F
y  <->  E* y  A F y ) )
109imbi2d 230 . . . . 5  |-  ( x  =  A  ->  (
( Fun  F  ->  E* y  x F y )  <->  ( Fun  F  ->  E* y  A F y ) ) )
111simprbi 275 . . . . . 6  |-  ( Fun 
F  ->  A. x E* y  x F
y )
121119.21bi 1604 . . . . 5  |-  ( Fun 
F  ->  E* y  x F y )
1310, 12vtoclg 2861 . . . 4  |-  ( A  e.  _V  ->  ( Fun  F  ->  E* y  A F y ) )
1413com12 30 . . 3  |-  ( Fun 
F  ->  ( A  e.  _V  ->  E* y  A F y ) )
15 moanimv 2153 . . 3  |-  ( E* y ( A  e. 
_V  /\  A F
y )  <->  ( A  e.  _V  ->  E* y  A F y ) )
1614, 15sylibr 134 . 2  |-  ( Fun 
F  ->  E* y
( A  e.  _V  /\  A F y ) )
17 moim 2142 . 2  |-  ( A. y ( A F y  ->  ( A  e.  _V  /\  A F y ) )  -> 
( E* y ( A  e.  _V  /\  A F y )  ->  E* y  A F
y ) )
187, 16, 17sylc 62 1  |-  ( Fun 
F  ->  E* y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   E*wmo 2078    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   Rel wrel 4724   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  funeu  5343  funco  5358  fununmo  5363  imadif  5401  fneu  5427  dff3im  5780  shftfn  11335
  Copyright terms: Public domain W3C validator