ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo Unicode version

Theorem funmo 5273
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo  |-  ( Fun 
F  ->  E* y  A F y )
Distinct variable groups:    y, A    y, F

Proof of Theorem funmo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dffun6 5272 . . . . . 6  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
21simplbi 274 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
3 brrelex 4703 . . . . . 6  |-  ( ( Rel  F  /\  A F y )  ->  A  e.  _V )
43ex 115 . . . . 5  |-  ( Rel 
F  ->  ( A F y  ->  A  e.  _V ) )
52, 4syl 14 . . . 4  |-  ( Fun 
F  ->  ( A F y  ->  A  e.  _V ) )
65ancrd 326 . . 3  |-  ( Fun 
F  ->  ( A F y  ->  ( A  e.  _V  /\  A F y ) ) )
76alrimiv 1888 . 2  |-  ( Fun 
F  ->  A. y
( A F y  ->  ( A  e. 
_V  /\  A F
y ) ) )
8 breq1 4036 . . . . . . 7  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
98mobidv 2081 . . . . . 6  |-  ( x  =  A  ->  ( E* y  x F
y  <->  E* y  A F y ) )
109imbi2d 230 . . . . 5  |-  ( x  =  A  ->  (
( Fun  F  ->  E* y  x F y )  <->  ( Fun  F  ->  E* y  A F y ) ) )
111simprbi 275 . . . . . 6  |-  ( Fun 
F  ->  A. x E* y  x F
y )
121119.21bi 1572 . . . . 5  |-  ( Fun 
F  ->  E* y  x F y )
1310, 12vtoclg 2824 . . . 4  |-  ( A  e.  _V  ->  ( Fun  F  ->  E* y  A F y ) )
1413com12 30 . . 3  |-  ( Fun 
F  ->  ( A  e.  _V  ->  E* y  A F y ) )
15 moanimv 2120 . . 3  |-  ( E* y ( A  e. 
_V  /\  A F
y )  <->  ( A  e.  _V  ->  E* y  A F y ) )
1614, 15sylibr 134 . 2  |-  ( Fun 
F  ->  E* y
( A  e.  _V  /\  A F y ) )
17 moim 2109 . 2  |-  ( A. y ( A F y  ->  ( A  e.  _V  /\  A F y ) )  -> 
( E* y ( A  e.  _V  /\  A F y )  ->  E* y  A F
y ) )
187, 16, 17sylc 62 1  |-  ( Fun 
F  ->  E* y  A F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E*wmo 2046    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   Rel wrel 4668   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-fun 5260
This theorem is referenced by:  funeu  5283  funco  5298  imadif  5338  fneu  5362  dff3im  5707  shftfn  10989
  Copyright terms: Public domain W3C validator