ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst Unicode version

Theorem 2ndconst 6071
Description: The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )

Proof of Theorem 2ndconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3605 . . 3  |-  ( A  e.  V  ->  E. x  x  e.  { A } )
2 fo2ndresm 6012 . . 3  |-  ( E. x  x  e.  { A }  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
31, 2syl 14 . 2  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
4 moeq 2826 . . . . . 6  |-  E* x  x  =  <. A , 
y >.
54moani 2043 . . . . 5  |-  E* x
( y  e.  B  /\  x  =  <. A ,  y >. )
6 vex 2658 . . . . . . . 8  |-  y  e. 
_V
76brres 4781 . . . . . . 7  |-  ( x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
8 fo2nd 6008 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
9 fofn 5303 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
108, 9ax-mp 7 . . . . . . . . . 10  |-  2nd  Fn  _V
11 vex 2658 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5414 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  x  e.  _V )  ->  ( ( 2nd `  x
)  =  y  <->  x 2nd y ) )
1310, 11, 12mp2an 420 . . . . . . . . 9  |-  ( ( 2nd `  x )  =  y  <->  x 2nd y )
1413anbi1i 451 . . . . . . . 8  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
15 elxp7 6020 . . . . . . . . . . 11  |-  ( x  e.  ( { A }  X.  B )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  { A }  /\  ( 2nd `  x )  e.  B ) ) )
16 eleq1 2175 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  x )  =  y  ->  (
( 2nd `  x
)  e.  B  <->  y  e.  B ) )
1716biimpa 292 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( 2nd `  x )  e.  B )  -> 
y  e.  B )
1817adantrl 467 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) )  ->  y  e.  B )
1918adantrl 467 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  y  e.  B )
20 elsni 3509 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x )  e.  { A }  ->  ( 1st `  x
)  =  A )
21 eqopi 6022 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  A  /\  ( 2nd `  x )  =  y ) )  ->  x  =  <. A ,  y >. )
2221ancom2s 538 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 2nd `  x
)  =  y  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2322an12s 537 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2420, 23sylanr2 400 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  e.  { A }
) )  ->  x  =  <. A ,  y
>. )
2524adantrrr 476 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  x  =  <. A ,  y
>. )
2619, 25jca 302 . . . . . . . . . . 11  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2715, 26sylan2b 283 . . . . . . . . . 10  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2827adantl 273 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) ) )  -> 
( y  e.  B  /\  x  =  <. A ,  y >. )
)
29 fveq2 5373 . . . . . . . . . . . 12  |-  ( x  =  <. A ,  y
>.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  y
>. ) )
30 op2ndg 6001 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( 2nd `  <. A ,  y >. )  =  y )
316, 30mpan2 419 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( 2nd `  <. A ,  y
>. )  =  y
)
3229, 31sylan9eqr 2167 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  x  =  <. A , 
y >. )  ->  ( 2nd `  x )  =  y )
3332adantrl 467 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( 2nd `  x )  =  y )
34 simprr 504 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  =  <. A ,  y >.
)
35 snidg 3518 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  A  e.  { A } )
3635adantr 272 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  A  e.  { A } )
37 simprl 503 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  y  e.  B )
38 opelxpi 4529 . . . . . . . . . . . 12  |-  ( ( A  e.  { A }  /\  y  e.  B
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
3936, 37, 38syl2anc 406 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
4034, 39eqeltrd 2189 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  e.  ( { A }  X.  B ) )
4133, 40jca 302 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( ( 2nd `  x )  =  y  /\  x  e.  ( { A }  X.  B ) ) )
4228, 41impbida 568 . . . . . . . 8  |-  ( A  e.  V  ->  (
( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4314, 42syl5bbr 193 . . . . . . 7  |-  ( A  e.  V  ->  (
( x 2nd y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
447, 43syl5bb 191 . . . . . 6  |-  ( A  e.  V  ->  (
x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4544mobidv 2009 . . . . 5  |-  ( A  e.  V  ->  ( E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y  <->  E* x ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
465, 45mpbiri 167 . . . 4  |-  ( A  e.  V  ->  E* x  x ( 2nd  |`  ( { A }  X.  B
) ) y )
4746alrimiv 1826 . . 3  |-  ( A  e.  V  ->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
48 funcnv2 5139 . . 3  |-  ( Fun  `' ( 2nd  |`  ( { A }  X.  B
) )  <->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
4947, 48sylibr 133 . 2  |-  ( A  e.  V  ->  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) )
50 dff1o3 5327 . 2  |-  ( ( 2nd  |`  ( { A }  X.  B
) ) : ( { A }  X.  B ) -1-1-onto-> B  <->  ( ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B  /\  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) ) )
513, 49, 50sylanbrc 411 1  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1310    = wceq 1312   E.wex 1449    e. wcel 1461   E*wmo 1974   _Vcvv 2655   {csn 3491   <.cop 3494   class class class wbr 3893    X. cxp 4495   `'ccnv 4496    |` cres 4499   Fun wfun 5073    Fn wfn 5074   -onto->wfo 5077   -1-1-onto->wf1o 5078   ` cfv 5079   1stc1st 5988   2ndc2nd 5989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-1st 5990  df-2nd 5991
This theorem is referenced by:  xpfi  6769  fsum2dlemstep  11089
  Copyright terms: Public domain W3C validator