ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndconst Unicode version

Theorem 2ndconst 6190
Description: The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
2ndconst  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )

Proof of Theorem 2ndconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3694 . . 3  |-  ( A  e.  V  ->  E. x  x  e.  { A } )
2 fo2ndresm 6130 . . 3  |-  ( E. x  x  e.  { A }  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
31, 2syl 14 . 2  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B )
4 moeq 2901 . . . . . 6  |-  E* x  x  =  <. A , 
y >.
54moani 2084 . . . . 5  |-  E* x
( y  e.  B  /\  x  =  <. A ,  y >. )
6 vex 2729 . . . . . . . 8  |-  y  e. 
_V
76brres 4890 . . . . . . 7  |-  ( x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
8 fo2nd 6126 . . . . . . . . . . 11  |-  2nd : _V -onto-> _V
9 fofn 5412 . . . . . . . . . . 11  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
108, 9ax-mp 5 . . . . . . . . . 10  |-  2nd  Fn  _V
11 vex 2729 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5527 . . . . . . . . . 10  |-  ( ( 2nd  Fn  _V  /\  x  e.  _V )  ->  ( ( 2nd `  x
)  =  y  <->  x 2nd y ) )
1310, 11, 12mp2an 423 . . . . . . . . 9  |-  ( ( 2nd `  x )  =  y  <->  x 2nd y )
1413anbi1i 454 . . . . . . . 8  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( x 2nd y  /\  x  e.  ( { A }  X.  B ) ) )
15 elxp7 6138 . . . . . . . . . . 11  |-  ( x  e.  ( { A }  X.  B )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  { A }  /\  ( 2nd `  x )  e.  B ) ) )
16 eleq1 2229 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  x )  =  y  ->  (
( 2nd `  x
)  e.  B  <->  y  e.  B ) )
1716biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( 2nd `  x )  e.  B )  -> 
y  e.  B )
1817adantrl 470 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) )  ->  y  e.  B )
1918adantrl 470 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  y  e.  B )
20 elsni 3594 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x )  e.  { A }  ->  ( 1st `  x
)  =  A )
21 eqopi 6140 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  A  /\  ( 2nd `  x )  =  y ) )  ->  x  =  <. A ,  y >. )
2221ancom2s 556 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 2nd `  x
)  =  y  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2322an12s 555 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  =  A ) )  ->  x  =  <. A ,  y >. )
2420, 23sylanr2 403 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 1st `  x )  e.  { A }
) )  ->  x  =  <. A ,  y
>. )
2524adantrrr 479 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  x  =  <. A ,  y
>. )
2619, 25jca 304 . . . . . . . . . . 11  |-  ( ( ( 2nd `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  { A }  /\  ( 2nd `  x
)  e.  B ) ) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2715, 26sylan2b 285 . . . . . . . . . 10  |-  ( ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  ->  (
y  e.  B  /\  x  =  <. A , 
y >. ) )
2827adantl 275 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) ) )  -> 
( y  e.  B  /\  x  =  <. A ,  y >. )
)
29 fveq2 5486 . . . . . . . . . . . 12  |-  ( x  =  <. A ,  y
>.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  y
>. ) )
30 op2ndg 6119 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  y  e.  _V )  ->  ( 2nd `  <. A ,  y >. )  =  y )
316, 30mpan2 422 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( 2nd `  <. A ,  y
>. )  =  y
)
3229, 31sylan9eqr 2221 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  x  =  <. A , 
y >. )  ->  ( 2nd `  x )  =  y )
3332adantrl 470 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( 2nd `  x )  =  y )
34 simprr 522 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  =  <. A ,  y >.
)
35 snidg 3605 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  A  e.  { A } )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  A  e.  { A } )
37 simprl 521 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  y  e.  B )
38 opelxpi 4636 . . . . . . . . . . . 12  |-  ( ( A  e.  { A }  /\  y  e.  B
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
3936, 37, 38syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
4034, 39eqeltrd 2243 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  x  e.  ( { A }  X.  B ) )
4133, 40jca 304 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( y  e.  B  /\  x  =  <. A ,  y >. )
)  ->  ( ( 2nd `  x )  =  y  /\  x  e.  ( { A }  X.  B ) ) )
4228, 41impbida 586 . . . . . . . 8  |-  ( A  e.  V  ->  (
( ( 2nd `  x
)  =  y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4314, 42bitr3id 193 . . . . . . 7  |-  ( A  e.  V  ->  (
( x 2nd y  /\  x  e.  ( { A }  X.  B
) )  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
447, 43syl5bb 191 . . . . . 6  |-  ( A  e.  V  ->  (
x ( 2nd  |`  ( { A }  X.  B
) ) y  <->  ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
4544mobidv 2050 . . . . 5  |-  ( A  e.  V  ->  ( E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y  <->  E* x ( y  e.  B  /\  x  =  <. A ,  y
>. ) ) )
465, 45mpbiri 167 . . . 4  |-  ( A  e.  V  ->  E* x  x ( 2nd  |`  ( { A }  X.  B
) ) y )
4746alrimiv 1862 . . 3  |-  ( A  e.  V  ->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
48 funcnv2 5248 . . 3  |-  ( Fun  `' ( 2nd  |`  ( { A }  X.  B
) )  <->  A. y E* x  x ( 2nd  |`  ( { A }  X.  B ) ) y )
4947, 48sylibr 133 . 2  |-  ( A  e.  V  ->  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) )
50 dff1o3 5438 . 2  |-  ( ( 2nd  |`  ( { A }  X.  B
) ) : ( { A }  X.  B ) -1-1-onto-> B  <->  ( ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -onto-> B  /\  Fun  `' ( 2nd  |`  ( { A }  X.  B
) ) ) )
513, 49, 50sylanbrc 414 1  |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480   E*wmo 2015    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579   class class class wbr 3982    X. cxp 4602   `'ccnv 4603    |` cres 4606   Fun wfun 5182    Fn wfn 5183   -onto->wfo 5186   -1-1-onto->wf1o 5187   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  xpfi  6895  fsum2dlemstep  11375  fprod2dlemstep  11563
  Copyright terms: Public domain W3C validator