ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6f Unicode version

Theorem dffun6f 5284
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1  |-  F/_ x A
dffun6f.2  |-  F/_ y A
Assertion
Ref Expression
dffun6f  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem dffun6f
Dummy variables  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5281 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. w A. v A. u ( ( w A v  /\  w A u )  -> 
v  =  u ) ) )
2 nfcv 2348 . . . . . . 7  |-  F/_ y
w
3 dffun6f.2 . . . . . . 7  |-  F/_ y A
4 nfcv 2348 . . . . . . 7  |-  F/_ y
v
52, 3, 4nfbr 4090 . . . . . 6  |-  F/ y  w A v
6 nfv 1551 . . . . . 6  |-  F/ v  w A y
7 breq2 4048 . . . . . 6  |-  ( v  =  y  ->  (
w A v  <->  w A
y ) )
85, 6, 7cbvmo 2094 . . . . 5  |-  ( E* v  w A v  <->  E* y  w A
y )
98albii 1493 . . . 4  |-  ( A. w E* v  w A v  <->  A. w E* y  w A y )
10 breq2 4048 . . . . . 6  |-  ( v  =  u  ->  (
w A v  <->  w A u ) )
1110mo4 2115 . . . . 5  |-  ( E* v  w A v  <->  A. v A. u ( ( w A v  /\  w A u )  ->  v  =  u ) )
1211albii 1493 . . . 4  |-  ( A. w E* v  w A v  <->  A. w A. v A. u ( ( w A v  /\  w A u )  -> 
v  =  u ) )
13 nfcv 2348 . . . . . . 7  |-  F/_ x w
14 dffun6f.1 . . . . . . 7  |-  F/_ x A
15 nfcv 2348 . . . . . . 7  |-  F/_ x
y
1613, 14, 15nfbr 4090 . . . . . 6  |-  F/ x  w A y
1716nfmo 2074 . . . . 5  |-  F/ x E* y  w A
y
18 nfv 1551 . . . . 5  |-  F/ w E* y  x A
y
19 breq1 4047 . . . . . 6  |-  ( w  =  x  ->  (
w A y  <->  x A
y ) )
2019mobidv 2090 . . . . 5  |-  ( w  =  x  ->  ( E* y  w A
y  <->  E* y  x A y ) )
2117, 18, 20cbval 1777 . . . 4  |-  ( A. w E* y  w A y  <->  A. x E* y  x A y )
229, 12, 213bitr3ri 211 . . 3  |-  ( A. x E* y  x A y  <->  A. w A. v A. u ( ( w A v  /\  w A u )  -> 
v  =  u ) )
2322anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x E* y  x A y )  <->  ( Rel  A  /\  A. w A. v A. u ( ( w A v  /\  w A u )  -> 
v  =  u ) ) )
241, 23bitr4i 187 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371   E*wmo 2055   F/_wnfc 2335   class class class wbr 4044   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-cnv 4683  df-co 4684  df-fun 5273
This theorem is referenced by:  dffun6  5285  dffun4f  5287  funopab  5306
  Copyright terms: Public domain W3C validator