| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun6f | Unicode version | ||
| Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dffun6f.1 |
|
| dffun6f.2 |
|
| Ref | Expression |
|---|---|
| dffun6f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 5268 |
. 2
| |
| 2 | nfcv 2339 |
. . . . . . 7
| |
| 3 | dffun6f.2 |
. . . . . . 7
| |
| 4 | nfcv 2339 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | nfbr 4079 |
. . . . . 6
|
| 6 | nfv 1542 |
. . . . . 6
| |
| 7 | breq2 4037 |
. . . . . 6
| |
| 8 | 5, 6, 7 | cbvmo 2085 |
. . . . 5
|
| 9 | 8 | albii 1484 |
. . . 4
|
| 10 | breq2 4037 |
. . . . . 6
| |
| 11 | 10 | mo4 2106 |
. . . . 5
|
| 12 | 11 | albii 1484 |
. . . 4
|
| 13 | nfcv 2339 |
. . . . . . 7
| |
| 14 | dffun6f.1 |
. . . . . . 7
| |
| 15 | nfcv 2339 |
. . . . . . 7
| |
| 16 | 13, 14, 15 | nfbr 4079 |
. . . . . 6
|
| 17 | 16 | nfmo 2065 |
. . . . 5
|
| 18 | nfv 1542 |
. . . . 5
| |
| 19 | breq1 4036 |
. . . . . 6
| |
| 20 | 19 | mobidv 2081 |
. . . . 5
|
| 21 | 17, 18, 20 | cbval 1768 |
. . . 4
|
| 22 | 9, 12, 21 | 3bitr3ri 211 |
. . 3
|
| 23 | 22 | anbi2i 457 |
. 2
|
| 24 | 1, 23 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-cnv 4671 df-co 4672 df-fun 5260 |
| This theorem is referenced by: dffun6 5272 dffun4f 5274 funopab 5293 |
| Copyright terms: Public domain | W3C validator |