| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun6f | Unicode version | ||
| Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dffun6f.1 |
|
| dffun6f.2 |
|
| Ref | Expression |
|---|---|
| dffun6f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 5281 |
. 2
| |
| 2 | nfcv 2348 |
. . . . . . 7
| |
| 3 | dffun6f.2 |
. . . . . . 7
| |
| 4 | nfcv 2348 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | nfbr 4090 |
. . . . . 6
|
| 6 | nfv 1551 |
. . . . . 6
| |
| 7 | breq2 4048 |
. . . . . 6
| |
| 8 | 5, 6, 7 | cbvmo 2094 |
. . . . 5
|
| 9 | 8 | albii 1493 |
. . . 4
|
| 10 | breq2 4048 |
. . . . . 6
| |
| 11 | 10 | mo4 2115 |
. . . . 5
|
| 12 | 11 | albii 1493 |
. . . 4
|
| 13 | nfcv 2348 |
. . . . . . 7
| |
| 14 | dffun6f.1 |
. . . . . . 7
| |
| 15 | nfcv 2348 |
. . . . . . 7
| |
| 16 | 13, 14, 15 | nfbr 4090 |
. . . . . 6
|
| 17 | 16 | nfmo 2074 |
. . . . 5
|
| 18 | nfv 1551 |
. . . . 5
| |
| 19 | breq1 4047 |
. . . . . 6
| |
| 20 | 19 | mobidv 2090 |
. . . . 5
|
| 21 | 17, 18, 20 | cbval 1777 |
. . . 4
|
| 22 | 9, 12, 21 | 3bitr3ri 211 |
. . 3
|
| 23 | 22 | anbi2i 457 |
. 2
|
| 24 | 1, 23 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-cnv 4683 df-co 4684 df-fun 5273 |
| This theorem is referenced by: dffun6 5285 dffun4f 5287 funopab 5306 |
| Copyright terms: Public domain | W3C validator |