Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun6f | Unicode version |
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dffun6f.1 | |
dffun6f.2 |
Ref | Expression |
---|---|
dffun6f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 5198 | . 2 | |
2 | nfcv 2308 | . . . . . . 7 | |
3 | dffun6f.2 | . . . . . . 7 | |
4 | nfcv 2308 | . . . . . . 7 | |
5 | 2, 3, 4 | nfbr 4028 | . . . . . 6 |
6 | nfv 1516 | . . . . . 6 | |
7 | breq2 3986 | . . . . . 6 | |
8 | 5, 6, 7 | cbvmo 2054 | . . . . 5 |
9 | 8 | albii 1458 | . . . 4 |
10 | breq2 3986 | . . . . . 6 | |
11 | 10 | mo4 2075 | . . . . 5 |
12 | 11 | albii 1458 | . . . 4 |
13 | nfcv 2308 | . . . . . . 7 | |
14 | dffun6f.1 | . . . . . . 7 | |
15 | nfcv 2308 | . . . . . . 7 | |
16 | 13, 14, 15 | nfbr 4028 | . . . . . 6 |
17 | 16 | nfmo 2034 | . . . . 5 |
18 | nfv 1516 | . . . . 5 | |
19 | breq1 3985 | . . . . . 6 | |
20 | 19 | mobidv 2050 | . . . . 5 |
21 | 17, 18, 20 | cbval 1742 | . . . 4 |
22 | 9, 12, 21 | 3bitr3ri 210 | . . 3 |
23 | 22 | anbi2i 453 | . 2 |
24 | 1, 23 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wmo 2015 wnfc 2295 class class class wbr 3982 wrel 4609 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-cnv 4612 df-co 4613 df-fun 5190 |
This theorem is referenced by: dffun6 5202 dffun4f 5204 funopab 5223 |
Copyright terms: Public domain | W3C validator |