ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst Unicode version

Theorem 1stconst 6274
Description: The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )

Proof of Theorem 1stconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3736 . . 3  |-  ( B  e.  V  ->  E. x  x  e.  { B } )
2 fo1stresm 6214 . . 3  |-  ( E. x  x  e.  { B }  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
31, 2syl 14 . 2  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
4 moeq 2935 . . . . . 6  |-  E* x  x  =  <. y ,  B >.
54moani 2112 . . . . 5  |-  E* x
( y  e.  A  /\  x  =  <. y ,  B >. )
6 vex 2763 . . . . . . . 8  |-  y  e. 
_V
76brres 4948 . . . . . . 7  |-  ( x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
8 fo1st 6210 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
9 fofn 5478 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
108, 9ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
11 vex 2763 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5597 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  x  e.  _V )  ->  ( ( 1st `  x
)  =  y  <->  x 1st y ) )
1310, 11, 12mp2an 426 . . . . . . . . 9  |-  ( ( 1st `  x )  =  y  <->  x 1st y )
1413anbi1i 458 . . . . . . . 8  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
15 elxp7 6223 . . . . . . . . . . 11  |-  ( x  e.  ( A  X.  { B } )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  { B } ) ) )
16 eleq1 2256 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  x )  =  y  ->  (
( 1st `  x
)  e.  A  <->  y  e.  A ) )
1716biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( 1st `  x )  e.  A )  -> 
y  e.  A )
1817adantrr 479 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) )  ->  y  e.  A )
1918adantrl 478 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
y  e.  A )
20 elsni 3636 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  x )  e.  { B }  ->  ( 2nd `  x
)  =  B )
21 eqopi 6225 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  y  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2221an12s 565 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2320, 22sylanr2 405 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  e.  { B }
) )  ->  x  =  <. y ,  B >. )
2423adantrrl 486 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  ->  x  =  <. y ,  B >. )
2519, 24jca 306 . . . . . . . . . . 11  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
( y  e.  A  /\  x  =  <. y ,  B >. )
)
2615, 25sylan2b 287 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  ->  ( y  e.  A  /\  x  =  <. y ,  B >. ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) ) )  ->  (
y  e.  A  /\  x  =  <. y ,  B >. ) )
28 simprr 531 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  =  <. y ,  B >. )
2928fveq2d 5558 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. y ,  B >. ) )
30 simprl 529 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  y  e.  A )
31 simpl 109 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  V )
32 op1stg 6203 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  V )  ->  ( 1st `  <. y ,  B >. )  =  y )
3330, 31, 32syl2anc 411 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st ` 
<. y ,  B >. )  =  y )
3429, 33eqtrd 2226 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  y )
35 snidg 3647 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  { B } )
37 opelxpi 4691 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  { B } )  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3830, 36, 37syl2anc 411 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3928, 38eqeltrd 2270 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  e.  ( A  X.  { B } ) )
4034, 39jca 306 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( ( 1st `  x )  =  y  /\  x  e.  ( A  X.  { B } ) ) )
4127, 40impbida 596 . . . . . . . 8  |-  ( B  e.  V  ->  (
( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( y  e.  A  /\  x  = 
<. y ,  B >. ) ) )
4214, 41bitr3id 194 . . . . . . 7  |-  ( B  e.  V  ->  (
( x 1st y  /\  x  e.  ( A  X.  { B }
) )  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
437, 42bitrid 192 . . . . . 6  |-  ( B  e.  V  ->  (
x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
4443mobidv 2078 . . . . 5  |-  ( B  e.  V  ->  ( E* x  x ( 1st  |`  ( A  X.  { B } ) ) y  <->  E* x ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
455, 44mpbiri 168 . . . 4  |-  ( B  e.  V  ->  E* x  x ( 1st  |`  ( A  X.  { B }
) ) y )
4645alrimiv 1885 . . 3  |-  ( B  e.  V  ->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
47 funcnv2 5314 . . 3  |-  ( Fun  `' ( 1st  |`  ( A  X.  { B }
) )  <->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
4846, 47sylibr 134 . 2  |-  ( B  e.  V  ->  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) )
49 dff1o3 5506 . 2  |-  ( ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B }
)
-1-1-onto-> A 
<->  ( ( 1st  |`  ( A  X.  { B }
) ) : ( A  X.  { B } ) -onto-> A  /\  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) ) )
503, 48, 49sylanbrc 417 1  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2043    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   class class class wbr 4029    X. cxp 4657   `'ccnv 4658    |` cres 4661   Fun wfun 5248    Fn wfn 5249   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254   1stc1st 6191   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator