ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst Unicode version

Theorem 1stconst 6200
Description: The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )

Proof of Theorem 1stconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3701 . . 3  |-  ( B  e.  V  ->  E. x  x  e.  { B } )
2 fo1stresm 6140 . . 3  |-  ( E. x  x  e.  { B }  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
31, 2syl 14 . 2  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
4 moeq 2905 . . . . . 6  |-  E* x  x  =  <. y ,  B >.
54moani 2089 . . . . 5  |-  E* x
( y  e.  A  /\  x  =  <. y ,  B >. )
6 vex 2733 . . . . . . . 8  |-  y  e. 
_V
76brres 4897 . . . . . . 7  |-  ( x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
8 fo1st 6136 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
9 fofn 5422 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
108, 9ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
11 vex 2733 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5537 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  x  e.  _V )  ->  ( ( 1st `  x
)  =  y  <->  x 1st y ) )
1310, 11, 12mp2an 424 . . . . . . . . 9  |-  ( ( 1st `  x )  =  y  <->  x 1st y )
1413anbi1i 455 . . . . . . . 8  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
15 elxp7 6149 . . . . . . . . . . 11  |-  ( x  e.  ( A  X.  { B } )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  { B } ) ) )
16 eleq1 2233 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  x )  =  y  ->  (
( 1st `  x
)  e.  A  <->  y  e.  A ) )
1716biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( 1st `  x )  e.  A )  -> 
y  e.  A )
1817adantrr 476 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) )  ->  y  e.  A )
1918adantrl 475 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
y  e.  A )
20 elsni 3601 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  x )  e.  { B }  ->  ( 2nd `  x
)  =  B )
21 eqopi 6151 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  y  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2221an12s 560 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2320, 22sylanr2 403 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  e.  { B }
) )  ->  x  =  <. y ,  B >. )
2423adantrrl 483 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  ->  x  =  <. y ,  B >. )
2519, 24jca 304 . . . . . . . . . . 11  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
( y  e.  A  /\  x  =  <. y ,  B >. )
)
2615, 25sylan2b 285 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  ->  ( y  e.  A  /\  x  =  <. y ,  B >. ) )
2726adantl 275 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) ) )  ->  (
y  e.  A  /\  x  =  <. y ,  B >. ) )
28 simprr 527 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  =  <. y ,  B >. )
2928fveq2d 5500 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. y ,  B >. ) )
30 simprl 526 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  y  e.  A )
31 simpl 108 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  V )
32 op1stg 6129 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  V )  ->  ( 1st `  <. y ,  B >. )  =  y )
3330, 31, 32syl2anc 409 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st ` 
<. y ,  B >. )  =  y )
3429, 33eqtrd 2203 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  y )
35 snidg 3612 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  { B } )
37 opelxpi 4643 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  { B } )  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3830, 36, 37syl2anc 409 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3928, 38eqeltrd 2247 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  e.  ( A  X.  { B } ) )
4034, 39jca 304 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( ( 1st `  x )  =  y  /\  x  e.  ( A  X.  { B } ) ) )
4127, 40impbida 591 . . . . . . . 8  |-  ( B  e.  V  ->  (
( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( y  e.  A  /\  x  = 
<. y ,  B >. ) ) )
4214, 41bitr3id 193 . . . . . . 7  |-  ( B  e.  V  ->  (
( x 1st y  /\  x  e.  ( A  X.  { B }
) )  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
437, 42syl5bb 191 . . . . . 6  |-  ( B  e.  V  ->  (
x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
4443mobidv 2055 . . . . 5  |-  ( B  e.  V  ->  ( E* x  x ( 1st  |`  ( A  X.  { B } ) ) y  <->  E* x ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
455, 44mpbiri 167 . . . 4  |-  ( B  e.  V  ->  E* x  x ( 1st  |`  ( A  X.  { B }
) ) y )
4645alrimiv 1867 . . 3  |-  ( B  e.  V  ->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
47 funcnv2 5258 . . 3  |-  ( Fun  `' ( 1st  |`  ( A  X.  { B }
) )  <->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
4846, 47sylibr 133 . 2  |-  ( B  e.  V  ->  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) )
49 dff1o3 5448 . 2  |-  ( ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B }
)
-1-1-onto-> A 
<->  ( ( 1st  |`  ( A  X.  { B }
) ) : ( A  X.  { B } ) -onto-> A  /\  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) ) )
503, 48, 49sylanbrc 415 1  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485   E*wmo 2020    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586   class class class wbr 3989    X. cxp 4609   `'ccnv 4610    |` cres 4613   Fun wfun 5192    Fn wfn 5193   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator