ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stconst Unicode version

Theorem 1stconst 6118
Description: The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
1stconst  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )

Proof of Theorem 1stconst
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snmg 3641 . . 3  |-  ( B  e.  V  ->  E. x  x  e.  { B } )
2 fo1stresm 6059 . . 3  |-  ( E. x  x  e.  { B }  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
31, 2syl 14 . 2  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -onto-> A )
4 moeq 2859 . . . . . 6  |-  E* x  x  =  <. y ,  B >.
54moani 2069 . . . . 5  |-  E* x
( y  e.  A  /\  x  =  <. y ,  B >. )
6 vex 2689 . . . . . . . 8  |-  y  e. 
_V
76brres 4825 . . . . . . 7  |-  ( x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
8 fo1st 6055 . . . . . . . . . . 11  |-  1st : _V -onto-> _V
9 fofn 5347 . . . . . . . . . . 11  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
108, 9ax-mp 5 . . . . . . . . . 10  |-  1st  Fn  _V
11 vex 2689 . . . . . . . . . 10  |-  x  e. 
_V
12 fnbrfvb 5462 . . . . . . . . . 10  |-  ( ( 1st  Fn  _V  /\  x  e.  _V )  ->  ( ( 1st `  x
)  =  y  <->  x 1st y ) )
1310, 11, 12mp2an 422 . . . . . . . . 9  |-  ( ( 1st `  x )  =  y  <->  x 1st y )
1413anbi1i 453 . . . . . . . 8  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( x 1st y  /\  x  e.  ( A  X.  { B } ) ) )
15 elxp7 6068 . . . . . . . . . . 11  |-  ( x  e.  ( A  X.  { B } )  <->  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x
)  e.  { B } ) ) )
16 eleq1 2202 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  x )  =  y  ->  (
( 1st `  x
)  e.  A  <->  y  e.  A ) )
1716biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( 1st `  x )  e.  A )  -> 
y  e.  A )
1817adantrr 470 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) )  ->  y  e.  A )
1918adantrl 469 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
y  e.  A )
20 elsni 3545 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  x )  e.  { B }  ->  ( 2nd `  x
)  =  B )
21 eqopi 6070 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  =  y  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2221an12s 554 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  =  B ) )  ->  x  =  <. y ,  B >. )
2320, 22sylanr2 402 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( 2nd `  x )  e.  { B }
) )  ->  x  =  <. y ,  B >. )
2423adantrrl 477 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  ->  x  =  <. y ,  B >. )
2519, 24jca 304 . . . . . . . . . . 11  |-  ( ( ( 1st `  x
)  =  y  /\  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  A  /\  ( 2nd `  x )  e.  { B }
) ) )  -> 
( y  e.  A  /\  x  =  <. y ,  B >. )
)
2615, 25sylan2b 285 . . . . . . . . . 10  |-  ( ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  ->  ( y  e.  A  /\  x  =  <. y ,  B >. ) )
2726adantl 275 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) ) )  ->  (
y  e.  A  /\  x  =  <. y ,  B >. ) )
28 simprr 521 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  =  <. y ,  B >. )
2928fveq2d 5425 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. y ,  B >. ) )
30 simprl 520 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  y  e.  A )
31 simpl 108 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  V )
32 op1stg 6048 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  V )  ->  ( 1st `  <. y ,  B >. )  =  y )
3330, 31, 32syl2anc 408 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st ` 
<. y ,  B >. )  =  y )
3429, 33eqtrd 2172 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( 1st `  x )  =  y )
35 snidg 3554 . . . . . . . . . . . . 13  |-  ( B  e.  V  ->  B  e.  { B } )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  B  e.  { B } )
37 opelxpi 4571 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  B  e.  { B } )  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3830, 36, 37syl2anc 408 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  <. y ,  B >.  e.  ( A  X.  { B }
) )
3928, 38eqeltrd 2216 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  x  e.  ( A  X.  { B } ) )
4034, 39jca 304 . . . . . . . . 9  |-  ( ( B  e.  V  /\  ( y  e.  A  /\  x  =  <. y ,  B >. )
)  ->  ( ( 1st `  x )  =  y  /\  x  e.  ( A  X.  { B } ) ) )
4127, 40impbida 585 . . . . . . . 8  |-  ( B  e.  V  ->  (
( ( 1st `  x
)  =  y  /\  x  e.  ( A  X.  { B } ) )  <->  ( y  e.  A  /\  x  = 
<. y ,  B >. ) ) )
4214, 41syl5bbr 193 . . . . . . 7  |-  ( B  e.  V  ->  (
( x 1st y  /\  x  e.  ( A  X.  { B }
) )  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
437, 42syl5bb 191 . . . . . 6  |-  ( B  e.  V  ->  (
x ( 1st  |`  ( A  X.  { B }
) ) y  <->  ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
4443mobidv 2035 . . . . 5  |-  ( B  e.  V  ->  ( E* x  x ( 1st  |`  ( A  X.  { B } ) ) y  <->  E* x ( y  e.  A  /\  x  =  <. y ,  B >. ) ) )
455, 44mpbiri 167 . . . 4  |-  ( B  e.  V  ->  E* x  x ( 1st  |`  ( A  X.  { B }
) ) y )
4645alrimiv 1846 . . 3  |-  ( B  e.  V  ->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
47 funcnv2 5183 . . 3  |-  ( Fun  `' ( 1st  |`  ( A  X.  { B }
) )  <->  A. y E* x  x ( 1st  |`  ( A  X.  { B } ) ) y )
4846, 47sylibr 133 . 2  |-  ( B  e.  V  ->  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) )
49 dff1o3 5373 . 2  |-  ( ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B }
)
-1-1-onto-> A 
<->  ( ( 1st  |`  ( A  X.  { B }
) ) : ( A  X.  { B } ) -onto-> A  /\  Fun  `' ( 1st  |`  ( A  X.  { B }
) ) ) )
503, 48, 49sylanbrc 413 1  |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B } ) ) : ( A  X.  { B } ) -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   E*wmo 2000   _Vcvv 2686   {csn 3527   <.cop 3530   class class class wbr 3929    X. cxp 4537   `'ccnv 4538    |` cres 4541   Fun wfun 5117    Fn wfn 5118   -onto->wfo 5121   -1-1-onto->wf1o 5122   ` cfv 5123   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator