ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap Unicode version

Theorem exmidmotap 7321
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Distinct variable group:    x, r

Proof of Theorem exmidmotap
Dummy variables  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r TAp  x )
2 exmidapne 7320 . . . . . . . . 9  |-  (EXMID  ->  (
r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
32adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
41, 3mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
5 simprr 531 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s TAp  x )
6 exmidapne 7320 . . . . . . . . 9  |-  (EXMID  ->  (
s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
76adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
85, 7mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
94, 8eqtr4d 2229 . . . . . 6  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  s )
109ex 115 . . . . 5  |-  (EXMID  ->  (
( r TAp  x  /\  s TAp  x )  ->  r  =  s ) )
1110alrimivv 1886 . . . 4  |-  (EXMID  ->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
12 tapeq1 7312 . . . . 5  |-  ( r  =  s  ->  (
r TAp  x  <->  s TAp  x
) )
1312mo4 2103 . . . 4  |-  ( E* r  r TAp  x  <->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
1411, 13sylibr 134 . . 3  |-  (EXMID  ->  E* r  r TAp  x )
1514alrimiv 1885 . 2  |-  (EXMID  ->  A. x E* r  r TAp  x
)
16 2onn 6574 . . . 4  |-  2o  e.  om
17 tapeq2 7313 . . . . . 6  |-  ( x  =  2o  ->  (
r TAp  x  <->  r TAp  2o ) )
1817mobidv 2078 . . . . 5  |-  ( x  =  2o  ->  ( E* r  r TAp  x  <->  E* r  r TAp  2o ) )
1918spcgv 2847 . . . 4  |-  ( 2o  e.  om  ->  ( A. x E* r  r TAp  x  ->  E* r 
r TAp  2o ) )
2016, 19ax-mp 5 . . 3  |-  ( A. x E* r  r TAp  x  ->  E* r  r TAp  2o )
21 2omotap 7319 . . 3  |-  ( E* r  r TAp  2o  -> EXMID )
2220, 21syl 14 . 2  |-  ( A. x E* r  r TAp  x  -> EXMID )
2315, 22impbii 126 1  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E*wmo 2043    e. wcel 2164    =/= wne 2364   {copab 4089  EXMIDwem 4223   omcom 4622   2oc2o 6463   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-exmid 4224  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-pap 7308  df-tap 7310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator