ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap Unicode version

Theorem exmidmotap 7344
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Distinct variable group:    x, r

Proof of Theorem exmidmotap
Dummy variables  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r TAp  x )
2 exmidapne 7343 . . . . . . . . 9  |-  (EXMID  ->  (
r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
32adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
41, 3mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
5 simprr 531 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s TAp  x )
6 exmidapne 7343 . . . . . . . . 9  |-  (EXMID  ->  (
s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
76adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
85, 7mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
94, 8eqtr4d 2232 . . . . . 6  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  s )
109ex 115 . . . . 5  |-  (EXMID  ->  (
( r TAp  x  /\  s TAp  x )  ->  r  =  s ) )
1110alrimivv 1889 . . . 4  |-  (EXMID  ->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
12 tapeq1 7335 . . . . 5  |-  ( r  =  s  ->  (
r TAp  x  <->  s TAp  x
) )
1312mo4 2106 . . . 4  |-  ( E* r  r TAp  x  <->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
1411, 13sylibr 134 . . 3  |-  (EXMID  ->  E* r  r TAp  x )
1514alrimiv 1888 . 2  |-  (EXMID  ->  A. x E* r  r TAp  x
)
16 2onn 6588 . . . 4  |-  2o  e.  om
17 tapeq2 7336 . . . . . 6  |-  ( x  =  2o  ->  (
r TAp  x  <->  r TAp  2o ) )
1817mobidv 2081 . . . . 5  |-  ( x  =  2o  ->  ( E* r  r TAp  x  <->  E* r  r TAp  2o ) )
1918spcgv 2851 . . . 4  |-  ( 2o  e.  om  ->  ( A. x E* r  r TAp  x  ->  E* r 
r TAp  2o ) )
2016, 19ax-mp 5 . . 3  |-  ( A. x E* r  r TAp  x  ->  E* r  r TAp  2o )
21 2omotap 7342 . . 3  |-  ( E* r  r TAp  2o  -> EXMID )
2220, 21syl 14 . 2  |-  ( A. x E* r  r TAp  x  -> EXMID )
2315, 22impbii 126 1  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E*wmo 2046    e. wcel 2167    =/= wne 2367   {copab 4094  EXMIDwem 4228   omcom 4627   2oc2o 6477   TAp wtap 7332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-exmid 4229  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-2o 6484  df-pap 7331  df-tap 7333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator