ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidmotap Unicode version

Theorem exmidmotap 7447
Description: The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.)
Assertion
Ref Expression
exmidmotap  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Distinct variable group:    x, r

Proof of Theorem exmidmotap
Dummy variables  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r TAp  x )
2 exmidapne 7446 . . . . . . . . 9  |-  (EXMID  ->  (
r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
32adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( r TAp  x  <->  r  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
41, 3mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
5 simprr 531 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s TAp  x )
6 exmidapne 7446 . . . . . . . . 9  |-  (EXMID  ->  (
s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
76adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
( s TAp  x  <->  s  =  { <. u ,  v
>.  |  ( (
u  e.  x  /\  v  e.  x )  /\  u  =/=  v
) } ) )
85, 7mpbid 147 . . . . . . 7  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
s  =  { <. u ,  v >.  |  ( ( u  e.  x  /\  v  e.  x
)  /\  u  =/=  v ) } )
94, 8eqtr4d 2265 . . . . . 6  |-  ( (EXMID  /\  ( r TAp  x  /\  s TAp  x ) )  -> 
r  =  s )
109ex 115 . . . . 5  |-  (EXMID  ->  (
( r TAp  x  /\  s TAp  x )  ->  r  =  s ) )
1110alrimivv 1921 . . . 4  |-  (EXMID  ->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
12 tapeq1 7438 . . . . 5  |-  ( r  =  s  ->  (
r TAp  x  <->  s TAp  x
) )
1312mo4 2139 . . . 4  |-  ( E* r  r TAp  x  <->  A. r A. s ( ( r TAp  x  /\  s TAp  x
)  ->  r  =  s ) )
1411, 13sylibr 134 . . 3  |-  (EXMID  ->  E* r  r TAp  x )
1514alrimiv 1920 . 2  |-  (EXMID  ->  A. x E* r  r TAp  x
)
16 2onn 6667 . . . 4  |-  2o  e.  om
17 tapeq2 7439 . . . . . 6  |-  ( x  =  2o  ->  (
r TAp  x  <->  r TAp  2o ) )
1817mobidv 2113 . . . . 5  |-  ( x  =  2o  ->  ( E* r  r TAp  x  <->  E* r  r TAp  2o ) )
1918spcgv 2890 . . . 4  |-  ( 2o  e.  om  ->  ( A. x E* r  r TAp  x  ->  E* r 
r TAp  2o ) )
2016, 19ax-mp 5 . . 3  |-  ( A. x E* r  r TAp  x  ->  E* r  r TAp  2o )
21 2omotap 7445 . . 3  |-  ( E* r  r TAp  2o  -> EXMID )
2220, 21syl 14 . 2  |-  ( A. x E* r  r TAp  x  -> EXMID )
2315, 22impbii 126 1  |-  (EXMID  <->  A. x E* r  r TAp  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E*wmo 2078    e. wcel 2200    =/= wne 2400   {copab 4144  EXMIDwem 4278   omcom 4682   2oc2o 6556   TAp wtap 7435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-exmid 4279  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-2o 6563  df-pap 7434  df-tap 7436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator