Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosubopt | Unicode version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
mosubopt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1529 | . . 3 | |
2 | nfe1 1484 | . . . 4 | |
3 | 2 | nfmo 2034 | . . 3 |
4 | nfa1 1529 | . . . . 5 | |
5 | nfe1 1484 | . . . . . . 7 | |
6 | 5 | nfex 1625 | . . . . . 6 |
7 | 6 | nfmo 2034 | . . . . 5 |
8 | copsexg 4222 | . . . . . . . 8 | |
9 | 8 | mobidv 2050 | . . . . . . 7 |
10 | 9 | biimpcd 158 | . . . . . 6 |
11 | 10 | sps 1525 | . . . . 5 |
12 | 4, 7, 11 | exlimd 1585 | . . . 4 |
13 | 12 | sps 1525 | . . 3 |
14 | 1, 3, 13 | exlimd 1585 | . 2 |
15 | moanimv 2089 | . . 3 | |
16 | simpl 108 | . . . . . 6 | |
17 | 16 | 2eximi 1589 | . . . . 5 |
18 | 17 | ancri 322 | . . . 4 |
19 | 18 | moimi 2079 | . . 3 |
20 | 15, 19 | sylbir 134 | . 2 |
21 | 14, 20 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wmo 2015 cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: mosubop 4670 funoprabg 5941 |
Copyright terms: Public domain | W3C validator |