ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubopt Unicode version

Theorem mosubopt 4740
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
mosubopt  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubopt
StepHypRef Expression
1 nfa1 1564 . . 3  |-  F/ y A. y A. z E* x ph
2 nfe1 1519 . . . 4  |-  F/ y E. y E. z
( A  =  <. y ,  z >.  /\  ph )
32nfmo 2074 . . 3  |-  F/ y E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
4 nfa1 1564 . . . . 5  |-  F/ z A. z E* x ph
5 nfe1 1519 . . . . . . 7  |-  F/ z E. z ( A  =  <. y ,  z
>.  /\  ph )
65nfex 1660 . . . . . 6  |-  F/ z E. y E. z
( A  =  <. y ,  z >.  /\  ph )
76nfmo 2074 . . . . 5  |-  F/ z E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
8 copsexg 4288 . . . . . . . 8  |-  ( A  =  <. y ,  z
>.  ->  ( ph  <->  E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
98mobidv 2090 . . . . . . 7  |-  ( A  =  <. y ,  z
>.  ->  ( E* x ph 
<->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
109biimpcd 159 . . . . . 6  |-  ( E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
1110sps 1560 . . . . 5  |-  ( A. z E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) ) )
124, 7, 11exlimd 1620 . . . 4  |-  ( A. z E* x ph  ->  ( E. z  A  = 
<. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
1312sps 1560 . . 3  |-  ( A. y A. z E* x ph  ->  ( E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
141, 3, 13exlimd 1620 . 2  |-  ( A. y A. z E* x ph  ->  ( E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
15 moanimv 2129 . . 3  |-  ( E* x ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )  <->  ( E. y E. z  A  = 
<. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
16 simpl 109 . . . . . 6  |-  ( ( A  =  <. y ,  z >.  /\  ph )  ->  A  =  <. y ,  z >. )
17162eximi 1624 . . . . 5  |-  ( E. y E. z ( A  =  <. y ,  z >.  /\  ph )  ->  E. y E. z  A  =  <. y ,  z >. )
1817ancri 324 . . . 4  |-  ( E. y E. z ( A  =  <. y ,  z >.  /\  ph )  ->  ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) ) )
1918moimi 2119 . . 3  |-  ( E* x ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2015, 19sylbir 135 . 2  |-  ( ( E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) )  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2114, 20syl 14 1  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1515   E*wmo 2055   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  mosubop  4741  funoprabg  6044
  Copyright terms: Public domain W3C validator