| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 |
|
| mp2d.2 |
|
| mp2d.3 |
|
| Ref | Expression |
|---|---|
| mp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 |
. 2
| |
| 2 | mp2d.2 |
. . 3
| |
| 3 | mp2d.3 |
. . 3
| |
| 4 | 2, 3 | mpid 42 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fisseneq 7004 exmidapne 7343 prloc 7575 axcaucvglemres 7983 seqf1oglem1 10628 seqf1oglem2 10629 bezoutlemmain 12190 coprm 12337 sqrt2irr 12355 oddprmdvds 12548 lmodfopnelem1 13956 xblss2ps 14724 xblss2 14725 perfectlem2 15320 lgsprme0 15367 pw1nct 15734 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |