| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 |
|
| mp2d.2 |
|
| mp2d.3 |
|
| Ref | Expression |
|---|---|
| mp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 |
. 2
| |
| 2 | mp2d.2 |
. . 3
| |
| 3 | mp2d.3 |
. . 3
| |
| 4 | 2, 3 | mpid 42 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 5978 fisseneq 7092 exmidapne 7442 prloc 7674 axcaucvglemres 8082 seqf1oglem1 10736 seqf1oglem2 10737 wrdind 11249 wrd2ind 11250 bezoutlemmain 12514 coprm 12661 sqrt2irr 12679 oddprmdvds 12872 lmodfopnelem1 14282 xblss2ps 15072 xblss2 15073 perfectlem2 15668 lgsprme0 15715 pw1nct 16328 apdiff 16375 |
| Copyright terms: Public domain | W3C validator |