| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 |
|
| mp2d.2 |
|
| mp2d.3 |
|
| Ref | Expression |
|---|---|
| mp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 |
. 2
| |
| 2 | mp2d.2 |
. . 3
| |
| 3 | mp2d.3 |
. . 3
| |
| 4 | 2, 3 | mpid 42 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fisseneq 6995 exmidapne 7327 prloc 7558 axcaucvglemres 7966 seqf1oglem1 10611 seqf1oglem2 10612 bezoutlemmain 12165 coprm 12312 sqrt2irr 12330 oddprmdvds 12523 lmodfopnelem1 13880 xblss2ps 14640 xblss2 14641 perfectlem2 15236 lgsprme0 15283 pw1nct 15647 apdiff 15692 |
| Copyright terms: Public domain | W3C validator |