| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 |
|
| mp2d.2 |
|
| mp2d.3 |
|
| Ref | Expression |
|---|---|
| mp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 |
. 2
| |
| 2 | mp2d.2 |
. . 3
| |
| 3 | mp2d.3 |
. . 3
| |
| 4 | 2, 3 | mpid 42 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fisseneq 7004 exmidapne 7345 prloc 7577 axcaucvglemres 7985 seqf1oglem1 10630 seqf1oglem2 10631 bezoutlemmain 12192 coprm 12339 sqrt2irr 12357 oddprmdvds 12550 lmodfopnelem1 13958 xblss2ps 14748 xblss2 14749 perfectlem2 15344 lgsprme0 15391 pw1nct 15758 apdiff 15805 |
| Copyright terms: Public domain | W3C validator |