Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version |
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | |
mp2d.2 | |
mp2d.3 |
Ref | Expression |
---|---|
mp2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 | |
2 | mp2d.2 | . . 3 | |
3 | mp2d.3 | . . 3 | |
4 | 2, 3 | mpid 42 | . 2 |
5 | 1, 4 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fisseneq 6905 prloc 7440 axcaucvglemres 7848 bezoutlemmain 11940 coprm 12085 sqrt2irr 12103 oddprmdvds 12293 xblss2ps 13119 xblss2 13120 lgsprme0 13658 pw1nct 13958 apdiff 14002 |
Copyright terms: Public domain | W3C validator |