ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d Unicode version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1  |-  ( ph  ->  ps )
mp2d.2  |-  ( ph  ->  ch )
mp2d.3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mp2d  |-  ( ph  ->  th )

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2  |-  ( ph  ->  ps )
2 mp2d.2 . . 3  |-  ( ph  ->  ch )
3 mp2d.3 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpid 42 . 2  |-  ( ph  ->  ( ps  ->  th )
)
51, 4mpd 13 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  fisseneq  6990  exmidapne  7322  prloc  7553  axcaucvglemres  7961  seqf1oglem1  10593  seqf1oglem2  10594  bezoutlemmain  12138  coprm  12285  sqrt2irr  12303  oddprmdvds  12495  lmodfopnelem1  13823  xblss2ps  14583  xblss2  14584  lgsprme0  15199  pw1nct  15563  apdiff  15608
  Copyright terms: Public domain W3C validator