ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d Unicode version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1  |-  ( ph  ->  ps )
mp2d.2  |-  ( ph  ->  ch )
mp2d.3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mp2d  |-  ( ph  ->  th )

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2  |-  ( ph  ->  ps )
2 mp2d.2 . . 3  |-  ( ph  ->  ch )
3 mp2d.3 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpid 42 . 2  |-  ( ph  ->  ( ps  ->  th )
)
51, 4mpd 13 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  fisseneq  6897  prloc  7432  axcaucvglemres  7840  bezoutlemmain  11931  coprm  12076  sqrt2irr  12094  oddprmdvds  12284  xblss2ps  13044  xblss2  13045  lgsprme0  13583  pw1nct  13883  apdiff  13927
  Copyright terms: Public domain W3C validator