| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | Unicode version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 |
|
| mp2d.2 |
|
| mp2d.3 |
|
| Ref | Expression |
|---|---|
| mp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 |
. 2
| |
| 2 | mp2d.2 |
. . 3
| |
| 3 | mp2d.3 |
. . 3
| |
| 4 | 2, 3 | mpid 42 |
. 2
|
| 5 | 1, 4 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fisseneq 7046 exmidapne 7392 prloc 7624 axcaucvglemres 8032 seqf1oglem1 10686 seqf1oglem2 10687 wrdind 11198 wrd2ind 11199 bezoutlemmain 12394 coprm 12541 sqrt2irr 12559 oddprmdvds 12752 lmodfopnelem1 14161 xblss2ps 14951 xblss2 14952 perfectlem2 15547 lgsprme0 15594 pw1nct 16081 apdiff 16128 |
| Copyright terms: Public domain | W3C validator |