ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d Unicode version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1  |-  ( ph  ->  ps )
mp2d.2  |-  ( ph  ->  ch )
mp2d.3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mp2d  |-  ( ph  ->  th )

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2  |-  ( ph  ->  ps )
2 mp2d.2 . . 3  |-  ( ph  ->  ch )
3 mp2d.3 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpid 42 . 2  |-  ( ph  ->  ( ps  ->  th )
)
51, 4mpd 13 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  riotaeqimp  5978  fisseneq  7092  exmidapne  7442  prloc  7674  axcaucvglemres  8082  seqf1oglem1  10736  seqf1oglem2  10737  wrdind  11249  wrd2ind  11250  bezoutlemmain  12514  coprm  12661  sqrt2irr  12679  oddprmdvds  12872  lmodfopnelem1  14282  xblss2ps  15072  xblss2  15073  perfectlem2  15668  lgsprme0  15715  pw1nct  16328  apdiff  16375
  Copyright terms: Public domain W3C validator