ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d Unicode version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1  |-  ( ph  ->  ps )
mp2d.2  |-  ( ph  ->  ch )
mp2d.3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
mp2d  |-  ( ph  ->  th )

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2  |-  ( ph  ->  ps )
2 mp2d.2 . . 3  |-  ( ph  ->  ch )
3 mp2d.3 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
42, 3mpid 42 . 2  |-  ( ph  ->  ( ps  ->  th )
)
51, 4mpd 13 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  fisseneq  7004  exmidapne  7343  prloc  7575  axcaucvglemres  7983  seqf1oglem1  10628  seqf1oglem2  10629  bezoutlemmain  12190  coprm  12337  sqrt2irr  12355  oddprmdvds  12548  lmodfopnelem1  13956  xblss2ps  14724  xblss2  14725  perfectlem2  15320  lgsprme0  15367  pw1nct  15734  apdiff  15779
  Copyright terms: Public domain W3C validator