ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmdvds Unicode version

Theorem oddprmdvds 12354
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Distinct variable group:    n, K, p

Proof of Theorem oddprmdvds
Dummy variables  m  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 12129 . . . 4  |-  2  e.  Prime
2 pcndvds2 12320 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
31, 2mpan 424 . . 3  |-  ( K  e.  NN  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
4 pcdvds 12316 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
51, 4mpan 424 . . 3  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
6 2nn 9082 . . . . . . . . 9  |-  2  e.  NN
76a1i 9 . . . . . . . 8  |-  ( K  e.  NN  ->  2  e.  NN )
81a1i 9 . . . . . . . . 9  |-  ( K  e.  NN  ->  2  e.  Prime )
9 id 19 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  NN )
108, 9pccld 12302 . . . . . . . 8  |-  ( K  e.  NN  ->  (
2  pCnt  K )  e.  NN0 )
117, 10nnexpcld 10678 . . . . . . 7  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  NN )
12 nndivdvds 11805 . . . . . . 7  |-  ( ( K  e.  NN  /\  ( 2 ^ (
2  pCnt  K )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
1311, 12mpdan 421 . . . . . 6  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  ||  K  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN ) )
1413adantr 276 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
15 elnn1uz2 9609 . . . . . . 7  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  <->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
) )
16 nncn 8929 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  K  e.  CC )
1711nncnd 8935 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  CC )
1811nnap0d 8967 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) ) #  0 )
1916, 17, 183jca 1177 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  (
2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
21 diveqap1 8664 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 )  -> 
( ( K  / 
( 2 ^ (
2  pCnt  K )
) )  =  1  <-> 
K  =  ( 2 ^ ( 2  pCnt 
K ) ) ) )
2220, 21syl 14 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  <->  K  =  (
2 ^ ( 2 
pCnt  K ) ) ) )
2310adantr 276 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( 2  pCnt 
K )  e.  NN0 )
24 oveq2 5885 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  pCnt 
K )  ->  (
2 ^ n )  =  ( 2 ^ ( 2  pCnt  K
) ) )
2524eqeq2d 2189 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  pCnt 
K )  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
2625adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  /\  n  =  ( 2  pCnt  K )
)  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
27 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  K  =  ( 2 ^ ( 2 
pCnt  K ) ) )
2823, 26, 27rspcedvd 2849 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) )
2928ex 115 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) ) )
30 pm2.24 621 . . . . . . . . . . . 12  |-  ( E. n  e.  NN0  K  =  ( 2 ^ n )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
3129, 30syl6 33 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3231adantr 276 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  =  ( 2 ^ (
2  pCnt  K )
)  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3322, 32sylbid 150 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3433com12 30 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  =  1  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
35 exprmfct 12140 . . . . . . . . 9  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  E. q  e.  Prime  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )
36 breq1 4008 . . . . . . . . . . . . . . . . 17  |-  ( q  =  2  ->  (
q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3736biimpcd 159 . . . . . . . . . . . . . . . 16  |-  ( q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  (
q  =  2  -> 
2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) ) )
3837adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( q  =  2  ->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3938necon3bd 2390 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) )
4039ex 115 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) ) )
41 prmnn 12112 . . . . . . . . . . . . . . 15  |-  ( q  e.  Prime  ->  q  e.  NN )
425, 13mpbid 147 . . . . . . . . . . . . . . 15  |-  ( K  e.  NN  ->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN )
43 nndivides 11806 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  NN  /\  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
4441, 42, 43syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
45 eqcom 2179 . . . . . . . . . . . . . . . . 17  |-  ( ( m  x.  q )  =  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
) )
4616ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  K  e.  CC )
47 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  NN )
4841ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  NN )
4947, 48nnmulcld 8970 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  NN )
5049nncnd 8935 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  CC )
5117, 18jca 306 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )
5251ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
53 divmulap 8634 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  ( m  x.  q
)  e.  CC  /\  ( ( 2 ^ ( 2  pCnt  K
) )  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5446, 50, 52, 53syl3anc 1238 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5545, 54bitrid 192 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  <-> 
( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) )  =  K ) )
56 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  Prime )
5756adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  Prime )
5857anim1i 340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
q  e.  Prime  /\  q  =/=  2 ) )
59 eldifsn 3721 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  e.  ( Prime  \  {
2 } )  <->  ( q  e.  Prime  /\  q  =/=  2 ) )
6058, 59sylibr 134 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  e.  ( Prime  \  { 2 } ) )
6160adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  e.  ( Prime  \  { 2 } ) )
62 breq1 4008 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  q  ->  (
p  ||  K  <->  q  ||  K ) )
6362adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2
)  /\  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K )  /\  p  =  q )  ->  (
p  ||  K  <->  q  ||  K ) )
6411ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN )
6564, 47nnmulcld 8970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  NN )
6665nnzd 9376 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  ZZ )
6741nnzd 9376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  ZZ )
6867ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  ZZ )
6966, 68jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  m )  e.  ZZ  /\  q  e.  ZZ ) )
7069adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )
)
71 dvdsmul2 11823 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )  ->  q  ||  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  m )  x.  q ) )
7270, 71syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  x.  q
) )
73 2nn0 9195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  2  e.  NN0
7473a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( K  e.  NN  ->  2  e.  NN0 )
7574, 10nn0expcld 10679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e. 
NN0 )
7675ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN0 )
7776nn0cnd 9233 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  CC )
78 nncn 8929 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
7978adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  CC )
8041nncnd 8935 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  CC )
8180ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  CC )
8277, 79, 813jca 1177 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
8382adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
84 mulass 7944 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8583, 84syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8672, 85breqtrd 4031 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) ) )
8786adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) ) )
88 breq2 4009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  (
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  <->  q  ||  K ) )
8988adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( q  ||  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  <-> 
q  ||  K )
)
9087, 89mpbid 147 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  K )
9161, 63, 90rspcedvd 2849 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
9291a1d 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
9392exp31 364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( q  =/=  2  ->  ( (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9493com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9555, 94sylbid 150 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9695rexlimdva 2594 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9744, 96sylbid 150 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9840, 97syldd 67 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9998rexlimdva 2594 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( E. q  e.  Prime  q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10099com12 30 . . . . . . . . . 10  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( K  e.  NN  ->  ( -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
101100impd 254 . . . . . . . . 9  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10235, 101syl 14 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10334, 102jaoi 716 . . . . . . 7  |-  ( ( ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10415, 103sylbi 121 . . . . . 6  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
105104com12 30 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10614, 105sylbid 150 . . . 4  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
107106ex 115 . . 3  |-  ( K  e.  NN  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( ( 2 ^ ( 2  pCnt  K
) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
1083, 5, 107mp2d 47 . 2  |-  ( K  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
109108imp 124 1  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456    \ cdif 3128   {csn 3594   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    x. cmul 7818   # cap 8540    / cdiv 8631   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   ^cexp 10521    || cdvds 11796   Primecprime 12109    pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator