ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmdvds Unicode version

Theorem oddprmdvds 12261
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Distinct variable group:    n, K, p

Proof of Theorem oddprmdvds
Dummy variables  m  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 12038 . . . 4  |-  2  e.  Prime
2 pcndvds2 12227 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
31, 2mpan 421 . . 3  |-  ( K  e.  NN  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
4 pcdvds 12223 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
51, 4mpan 421 . . 3  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
6 2nn 9009 . . . . . . . . 9  |-  2  e.  NN
76a1i 9 . . . . . . . 8  |-  ( K  e.  NN  ->  2  e.  NN )
81a1i 9 . . . . . . . . 9  |-  ( K  e.  NN  ->  2  e.  Prime )
9 id 19 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  NN )
108, 9pccld 12209 . . . . . . . 8  |-  ( K  e.  NN  ->  (
2  pCnt  K )  e.  NN0 )
117, 10nnexpcld 10599 . . . . . . 7  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  NN )
12 nndivdvds 11722 . . . . . . 7  |-  ( ( K  e.  NN  /\  ( 2 ^ (
2  pCnt  K )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
1311, 12mpdan 418 . . . . . 6  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  ||  K  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN ) )
1413adantr 274 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
15 elnn1uz2 9536 . . . . . . 7  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  <->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
) )
16 nncn 8856 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  K  e.  CC )
1711nncnd 8862 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  CC )
1811nnap0d 8894 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) ) #  0 )
1916, 17, 183jca 1166 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  (
2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
2019adantr 274 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
21 diveqap1 8592 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 )  -> 
( ( K  / 
( 2 ^ (
2  pCnt  K )
) )  =  1  <-> 
K  =  ( 2 ^ ( 2  pCnt 
K ) ) ) )
2220, 21syl 14 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  <->  K  =  (
2 ^ ( 2 
pCnt  K ) ) ) )
2310adantr 274 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( 2  pCnt 
K )  e.  NN0 )
24 oveq2 5844 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  pCnt 
K )  ->  (
2 ^ n )  =  ( 2 ^ ( 2  pCnt  K
) ) )
2524eqeq2d 2176 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  pCnt 
K )  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
2625adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  /\  n  =  ( 2  pCnt  K )
)  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
27 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  K  =  ( 2 ^ ( 2 
pCnt  K ) ) )
2823, 26, 27rspcedvd 2831 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) )
2928ex 114 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) ) )
30 pm2.24 611 . . . . . . . . . . . 12  |-  ( E. n  e.  NN0  K  =  ( 2 ^ n )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
3129, 30syl6 33 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3231adantr 274 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  =  ( 2 ^ (
2  pCnt  K )
)  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3322, 32sylbid 149 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3433com12 30 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  =  1  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
35 exprmfct 12049 . . . . . . . . 9  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  E. q  e.  Prime  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )
36 breq1 3979 . . . . . . . . . . . . . . . . 17  |-  ( q  =  2  ->  (
q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3736biimpcd 158 . . . . . . . . . . . . . . . 16  |-  ( q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  (
q  =  2  -> 
2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) ) )
3837adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( q  =  2  ->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3938necon3bd 2377 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) )
4039ex 114 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) ) )
41 prmnn 12021 . . . . . . . . . . . . . . 15  |-  ( q  e.  Prime  ->  q  e.  NN )
425, 13mpbid 146 . . . . . . . . . . . . . . 15  |-  ( K  e.  NN  ->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN )
43 nndivides 11723 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  NN  /\  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
4441, 42, 43syl2anr 288 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
45 eqcom 2166 . . . . . . . . . . . . . . . . 17  |-  ( ( m  x.  q )  =  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
) )
4616ad2antrr 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  K  e.  CC )
47 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  NN )
4841ad2antlr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  NN )
4947, 48nnmulcld 8897 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  NN )
5049nncnd 8862 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  CC )
5117, 18jca 304 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )
5251ad2antrr 480 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
53 divmulap 8562 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  ( m  x.  q
)  e.  CC  /\  ( ( 2 ^ ( 2  pCnt  K
) )  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5446, 50, 52, 53syl3anc 1227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5545, 54syl5bb 191 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  <-> 
( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) )  =  K ) )
56 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  Prime )
5756adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  Prime )
5857anim1i 338 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
q  e.  Prime  /\  q  =/=  2 ) )
59 eldifsn 3697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  e.  ( Prime  \  {
2 } )  <->  ( q  e.  Prime  /\  q  =/=  2 ) )
6058, 59sylibr 133 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  e.  ( Prime  \  { 2 } ) )
6160adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  e.  ( Prime  \  { 2 } ) )
62 breq1 3979 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  q  ->  (
p  ||  K  <->  q  ||  K ) )
6362adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2
)  /\  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K )  /\  p  =  q )  ->  (
p  ||  K  <->  q  ||  K ) )
6411ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN )
6564, 47nnmulcld 8897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  NN )
6665nnzd 9303 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  ZZ )
6741nnzd 9303 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  ZZ )
6867ad2antlr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  ZZ )
6966, 68jca 304 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  m )  e.  ZZ  /\  q  e.  ZZ ) )
7069adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )
)
71 dvdsmul2 11740 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )  ->  q  ||  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  m )  x.  q ) )
7270, 71syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  x.  q
) )
73 2nn0 9122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  2  e.  NN0
7473a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( K  e.  NN  ->  2  e.  NN0 )
7574, 10nn0expcld 10600 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e. 
NN0 )
7675ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN0 )
7776nn0cnd 9160 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  CC )
78 nncn 8856 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
7978adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  CC )
8041nncnd 8862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  CC )
8180ad2antlr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  CC )
8277, 79, 813jca 1166 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
8382adantr 274 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
84 mulass 7875 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8583, 84syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8672, 85breqtrd 4002 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) ) )
8786adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) ) )
88 breq2 3980 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  (
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  <->  q  ||  K ) )
8988adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( q  ||  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  <-> 
q  ||  K )
)
9087, 89mpbid 146 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  K )
9161, 63, 90rspcedvd 2831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
9291a1d 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
9392exp31 362 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( q  =/=  2  ->  ( (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9493com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9555, 94sylbid 149 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9695rexlimdva 2581 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9744, 96sylbid 149 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9840, 97syldd 67 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9998rexlimdva 2581 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( E. q  e.  Prime  q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10099com12 30 . . . . . . . . . 10  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( K  e.  NN  ->  ( -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
101100impd 252 . . . . . . . . 9  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10235, 101syl 14 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10334, 102jaoi 706 . . . . . . 7  |-  ( ( ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10415, 103sylbi 120 . . . . . 6  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
105104com12 30 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10614, 105sylbid 149 . . . 4  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
107106ex 114 . . 3  |-  ( K  e.  NN  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( ( 2 ^ ( 2  pCnt  K
) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
1083, 5, 107mp2d 47 . 2  |-  ( K  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
109108imp 123 1  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 967    = wceq 1342    e. wcel 2135    =/= wne 2334   E.wrex 2443    \ cdif 3108   {csn 3570   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   0cc0 7744   1c1 7745    x. cmul 7749   # cap 8470    / cdiv 8559   NNcn 8848   2c2 8899   NN0cn0 9105   ZZcz 9182   ZZ>=cuz 9457   ^cexp 10444    || cdvds 11713   Primecprime 12018    pCnt cpc 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861  df-prm 12019  df-pc 12194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator