ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmdvds Unicode version

Theorem oddprmdvds 12550
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
Assertion
Ref Expression
oddprmdvds  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Distinct variable group:    n, K, p

Proof of Theorem oddprmdvds
Dummy variables  m  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 12322 . . . 4  |-  2  e.  Prime
2 pcndvds2 12515 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
31, 2mpan 424 . . 3  |-  ( K  e.  NN  ->  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )
4 pcdvds 12511 . . . 4  |-  ( ( 2  e.  Prime  /\  K  e.  NN )  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
51, 4mpan 424 . . 3  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  ||  K )
6 2nn 9171 . . . . . . . . 9  |-  2  e.  NN
76a1i 9 . . . . . . . 8  |-  ( K  e.  NN  ->  2  e.  NN )
81a1i 9 . . . . . . . . 9  |-  ( K  e.  NN  ->  2  e.  Prime )
9 id 19 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  NN )
108, 9pccld 12496 . . . . . . . 8  |-  ( K  e.  NN  ->  (
2  pCnt  K )  e.  NN0 )
117, 10nnexpcld 10806 . . . . . . 7  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  NN )
12 nndivdvds 11980 . . . . . . 7  |-  ( ( K  e.  NN  /\  ( 2 ^ (
2  pCnt  K )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
1311, 12mpdan 421 . . . . . 6  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  ||  K  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN ) )
1413adantr 276 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K 
<->  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN ) )
15 elnn1uz2 9700 . . . . . . 7  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  <->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
) )
16 nncn 9017 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  K  e.  CC )
1711nncnd 9023 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e.  CC )
1811nnap0d 9055 . . . . . . . . . . . . 13  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) ) #  0 )
1916, 17, 183jca 1179 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  e.  CC  /\  (
2 ^ ( 2 
pCnt  K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
21 diveqap1 8751 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 )  -> 
( ( K  / 
( 2 ^ (
2  pCnt  K )
) )  =  1  <-> 
K  =  ( 2 ^ ( 2  pCnt 
K ) ) ) )
2220, 21syl 14 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  <->  K  =  (
2 ^ ( 2 
pCnt  K ) ) ) )
2310adantr 276 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( 2  pCnt 
K )  e.  NN0 )
24 oveq2 5933 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( 2  pCnt 
K )  ->  (
2 ^ n )  =  ( 2 ^ ( 2  pCnt  K
) ) )
2524eqeq2d 2208 . . . . . . . . . . . . . . 15  |-  ( n  =  ( 2  pCnt 
K )  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
2625adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  /\  n  =  ( 2  pCnt  K )
)  ->  ( K  =  ( 2 ^ n )  <->  K  =  ( 2 ^ (
2  pCnt  K )
) ) )
27 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  K  =  ( 2 ^ ( 2 
pCnt  K ) ) )
2823, 26, 27rspcedvd 2874 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  K  =  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) )
2928ex 115 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  ->  E. n  e.  NN0  K  =  ( 2 ^ n ) ) )
30 pm2.24 622 . . . . . . . . . . . 12  |-  ( E. n  e.  NN0  K  =  ( 2 ^ n )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
3129, 30syl6 33 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( K  =  ( 2 ^ ( 2  pCnt 
K ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3231adantr 276 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( K  =  ( 2 ^ (
2  pCnt  K )
)  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3322, 32sylbid 150 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  1  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
3433com12 30 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  =  1  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
35 exprmfct 12333 . . . . . . . . 9  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  E. q  e.  Prime  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )
36 breq1 4037 . . . . . . . . . . . . . . . . 17  |-  ( q  =  2  ->  (
q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3736biimpcd 159 . . . . . . . . . . . . . . . 16  |-  ( q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  (
q  =  2  -> 
2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) ) )
3837adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( q  =  2  ->  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) ) ) )
3938necon3bd 2410 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) )
4039ex 115 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  q  =/=  2
) ) )
41 prmnn 12305 . . . . . . . . . . . . . . 15  |-  ( q  e.  Prime  ->  q  e.  NN )
425, 13mpbid 147 . . . . . . . . . . . . . . 15  |-  ( K  e.  NN  ->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN )
43 nndivides 11981 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  NN  /\  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  e.  NN )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
4441, 42, 43syl2anr 290 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  <->  E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) ) ) )
45 eqcom 2198 . . . . . . . . . . . . . . . . 17  |-  ( ( m  x.  q )  =  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  <->  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
) )
4616ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  K  e.  CC )
47 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  NN )
4841ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  NN )
4947, 48nnmulcld 9058 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  NN )
5049nncnd 9023 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( m  x.  q )  e.  CC )
5117, 18jca 306 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  NN  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )
5251ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  ( 2 ^ ( 2  pCnt 
K ) ) #  0 ) )
53 divmulap 8721 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  CC  /\  ( m  x.  q
)  e.  CC  /\  ( ( 2 ^ ( 2  pCnt  K
) )  e.  CC  /\  ( 2 ^ (
2  pCnt  K )
) #  0 ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5446, 50, 52, 53syl3anc 1249 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  =  ( m  x.  q
)  <->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) )  =  K ) )
5545, 54bitrid 192 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  <-> 
( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) )  =  K ) )
56 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
q  e.  Prime )
5756adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  Prime )
5857anim1i 340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
q  e.  Prime  /\  q  =/=  2 ) )
59 eldifsn 3750 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( q  e.  ( Prime  \  {
2 } )  <->  ( q  e.  Prime  /\  q  =/=  2 ) )
6058, 59sylibr 134 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  e.  ( Prime  \  { 2 } ) )
6160adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  e.  ( Prime  \  { 2 } ) )
62 breq1 4037 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  q  ->  (
p  ||  K  <->  q  ||  K ) )
6362adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2
)  /\  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K )  /\  p  =  q )  ->  (
p  ||  K  <->  q  ||  K ) )
6411ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN )
6564, 47nnmulcld 9058 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  NN )
6665nnzd 9466 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  e.  ZZ )
6741nnzd 9466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  ZZ )
6867ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  ZZ )
6966, 68jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  m )  e.  ZZ  /\  q  e.  ZZ ) )
7069adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )
)
71 dvdsmul2 11998 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  e.  ZZ  /\  q  e.  ZZ )  ->  q  ||  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  m )  x.  q ) )
7270, 71syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( ( 2 ^ ( 2  pCnt 
K ) )  x.  m )  x.  q
) )
73 2nn0 9285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  2  e.  NN0
7473a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( K  e.  NN  ->  2  e.  NN0 )
7574, 10nn0expcld 10807 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  NN  ->  (
2 ^ ( 2 
pCnt  K ) )  e. 
NN0 )
7675ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  NN0 )
7776nn0cnd 9323 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( 2 ^ ( 2  pCnt  K
) )  e.  CC )
78 nncn 9017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
7978adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  m  e.  CC )
8041nncnd 9023 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( q  e.  Prime  ->  q  e.  CC )
8180ad2antlr 489 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  q  e.  CC )
8277, 79, 813jca 1179 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
8382adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC ) )
84 mulass 8029 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  e.  CC  /\  m  e.  CC  /\  q  e.  CC )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8583, 84syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  (
( ( 2 ^ ( 2  pCnt  K
) )  x.  m
)  x.  q )  =  ( ( 2 ^ ( 2  pCnt 
K ) )  x.  ( m  x.  q
) ) )
8672, 85breqtrd 4060 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( K  e.  NN  /\  q  e. 
Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  ->  q  ||  ( ( 2 ^ ( 2  pCnt  K
) )  x.  (
m  x.  q ) ) )
8786adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) ) )
88 breq2 4038 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  (
q  ||  ( (
2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  <->  q  ||  K ) )
8988adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( q  ||  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  <-> 
q  ||  K )
)
9087, 89mpbid 147 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
q  ||  K )
9161, 63, 90rspcedvd 2874 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
9291a1d 22 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  /\  q  =/=  2 )  /\  (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
9392exp31 364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( q  =/=  2  ->  ( (
( 2 ^ (
2  pCnt  K )
)  x.  ( m  x.  q ) )  =  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9493com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( ( 2 ^ ( 2 
pCnt  K ) )  x.  ( m  x.  q
) )  =  K  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9555, 94sylbid 150 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN  /\  q  e.  Prime )  /\  m  e.  NN )  ->  ( ( m  x.  q )  =  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9695rexlimdva 2614 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( E. m  e.  NN  ( m  x.  q )  =  ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  ->  ( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9744, 96sylbid 150 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( q  =/=  2  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9840, 97syldd 67 . . . . . . . . . . . 12  |-  ( ( K  e.  NN  /\  q  e.  Prime )  -> 
( q  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  2  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
9998rexlimdva 2614 . . . . . . . . . . 11  |-  ( K  e.  NN  ->  ( E. q  e.  Prime  q 
||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
10099com12 30 . . . . . . . . . 10  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( K  e.  NN  ->  ( -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
101100impd 254 . . . . . . . . 9  |-  ( E. q  e.  Prime  q  ||  ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10235, 101syl 14 . . . . . . . 8  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  ( ZZ>= `  2
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10334, 102jaoi 717 . . . . . . 7  |-  ( ( ( K  /  (
2 ^ ( 2 
pCnt  K ) ) )  =  1  \/  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  ( ZZ>= `  2 )
)  ->  ( ( K  e.  NN  /\  -.  2  ||  ( K  / 
( 2 ^ (
2  pCnt  K )
) ) )  -> 
( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10415, 103sylbi 121 . . . . . 6  |-  ( ( K  /  ( 2 ^ ( 2  pCnt 
K ) ) )  e.  NN  ->  (
( K  e.  NN  /\ 
-.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
105104com12 30 . . . . 5  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
10614, 105sylbid 150 . . . 4  |-  ( ( K  e.  NN  /\  -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) ) )  ->  ( ( 2 ^ ( 2  pCnt 
K ) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n
)  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) )
107106ex 115 . . 3  |-  ( K  e.  NN  ->  ( -.  2  ||  ( K  /  ( 2 ^ ( 2  pCnt  K
) ) )  -> 
( ( 2 ^ ( 2  pCnt  K
) )  ||  K  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) ) ) )
1083, 5, 107mp2d 47 . 2  |-  ( K  e.  NN  ->  ( -.  E. n  e.  NN0  K  =  ( 2 ^ n )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K ) )
109108imp 124 1  |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476    \ cdif 3154   {csn 3623   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    x. cmul 7903   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator