Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prloc | Unicode version |
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
Ref | Expression |
---|---|
prloc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 7415 | . . . 4 | |
2 | simpr3 995 | . . . 4 | |
3 | 1, 2 | sylbi 120 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | simpr 109 | . 2 | |
6 | ltrelnq 7306 | . . . . . . 7 | |
7 | 6 | brel 4656 | . . . . . 6 |
8 | 7 | simpld 111 | . . . . 5 |
9 | 8 | adantl 275 | . . . 4 |
10 | simpr 109 | . . . . . . 7 | |
11 | 10 | breq1d 3992 | . . . . . 6 |
12 | 10 | eleq1d 2235 | . . . . . . 7 |
13 | 12 | orbi1d 781 | . . . . . 6 |
14 | 11, 13 | imbi12d 233 | . . . . 5 |
15 | 14 | ralbidv 2466 | . . . 4 |
16 | 9, 15 | rspcdv 2833 | . . 3 |
17 | 7 | simprd 113 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | simpr 109 | . . . . . 6 | |
20 | 19 | breq2d 3994 | . . . . 5 |
21 | 19 | eleq1d 2235 | . . . . . 6 |
22 | 21 | orbi2d 780 | . . . . 5 |
23 | 20, 22 | imbi12d 233 | . . . 4 |
24 | 18, 23 | rspcdv 2833 | . . 3 |
25 | 16, 24 | syld 45 | . 2 |
26 | 4, 5, 25 | mp2d 47 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 cop 3579 class class class wbr 3982 cnq 7221 cltq 7226 cnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 df-inp 7407 |
This theorem is referenced by: prarloclem3step 7437 addnqprlemfl 7500 addnqprlemfu 7501 mullocprlem 7511 mulnqprlemfl 7516 mulnqprlemfu 7517 ltsopr 7537 ltexprlemloc 7548 addcanprleml 7555 addcanprlemu 7556 recexprlemloc 7572 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 caucvgprlemladdrl 7619 |
Copyright terms: Public domain | W3C validator |