| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > prloc | Unicode version | ||
| Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| prloc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elinp 7541 | 
. . . 4
 | |
| 2 | simpr3 1007 | 
. . . 4
 | |
| 3 | 1, 2 | sylbi 121 | 
. . 3
 | 
| 4 | 3 | adantr 276 | 
. 2
 | 
| 5 | simpr 110 | 
. 2
 | |
| 6 | ltrelnq 7432 | 
. . . . . . 7
 | |
| 7 | 6 | brel 4715 | 
. . . . . 6
 | 
| 8 | 7 | simpld 112 | 
. . . . 5
 | 
| 9 | 8 | adantl 277 | 
. . . 4
 | 
| 10 | simpr 110 | 
. . . . . . 7
 | |
| 11 | 10 | breq1d 4043 | 
. . . . . 6
 | 
| 12 | 10 | eleq1d 2265 | 
. . . . . . 7
 | 
| 13 | 12 | orbi1d 792 | 
. . . . . 6
 | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . 5
 | 
| 15 | 14 | ralbidv 2497 | 
. . . 4
 | 
| 16 | 9, 15 | rspcdv 2871 | 
. . 3
 | 
| 17 | 7 | simprd 114 | 
. . . . 5
 | 
| 18 | 17 | adantl 277 | 
. . . 4
 | 
| 19 | simpr 110 | 
. . . . . 6
 | |
| 20 | 19 | breq2d 4045 | 
. . . . 5
 | 
| 21 | 19 | eleq1d 2265 | 
. . . . . 6
 | 
| 22 | 21 | orbi2d 791 | 
. . . . 5
 | 
| 23 | 20, 22 | imbi12d 234 | 
. . . 4
 | 
| 24 | 18, 23 | rspcdv 2871 | 
. . 3
 | 
| 25 | 16, 24 | syld 45 | 
. 2
 | 
| 26 | 4, 5, 25 | mp2d 47 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-qs 6598 df-ni 7371 df-nqqs 7415 df-ltnqqs 7420 df-inp 7533 | 
| This theorem is referenced by: prarloclem3step 7563 addnqprlemfl 7626 addnqprlemfu 7627 mullocprlem 7637 mulnqprlemfl 7642 mulnqprlemfu 7643 ltsopr 7663 ltexprlemloc 7674 addcanprleml 7681 addcanprlemu 7682 recexprlemloc 7698 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 | 
| Copyright terms: Public domain | W3C validator |