ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc Unicode version

Theorem prloc 7113
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A  e.  L  \/  B  e.  U ) )

Proof of Theorem prloc
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7096 . . . 4  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
2 simpr3 952 . . . 4  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
31, 2sylbi 120 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  U )
) )
43adantr 271 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
5 simpr 109 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A  <Q  B )
6 ltrelnq 6987 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4505 . . . . . 6  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
87simpld 111 . . . . 5  |-  ( A 
<Q  B  ->  A  e. 
Q. )
98adantl 272 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A  e.  Q. )
10 simpr 109 . . . . . . 7  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  q  =  A )
1110breq1d 3863 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210eleq1d 2157 . . . . . . 7  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
q  e.  L  <->  A  e.  L ) )
1312orbi1d 741 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  r  e.  U ) ) )
1411, 13imbi12d 233 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
1514ralbidv 2381 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  ( A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  Q.  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
169, 15rspcdv 2728 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) )  ->  A. r  e.  Q.  ( A  <Q  r  -> 
( A  e.  L  \/  r  e.  U
) ) ) )
177simprd 113 . . . . 5  |-  ( A 
<Q  B  ->  B  e. 
Q. )
1817adantl 272 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  B  e.  Q. )
19 simpr 109 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  r  =  B )
2019breq2d 3865 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  ( A  <Q  r  <->  A  <Q  B ) )
2119eleq1d 2157 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
r  e.  U  <->  B  e.  U ) )
2221orbi2d 740 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
( A  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  B  e.  U ) ) )
2320, 22imbi12d 233 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U
) )  <->  ( A  <Q  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
2418, 23rspcdv 2728 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. r  e.  Q.  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U )
)  ->  ( A  <Q  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
2516, 24syld 45 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) )  -> 
( A  <Q  B  -> 
( A  e.  L  \/  B  e.  U
) ) ) )
264, 5, 25mp2d 47 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A  e.  L  \/  B  e.  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665    /\ w3a 925    = wceq 1290    e. wcel 1439   A.wral 2360   E.wrex 2361    C_ wss 3002   <.cop 3455   class class class wbr 3853   Q.cnq 6902    <Q cltq 6907   P.cnp 6913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-iinf 4418
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-qs 6314  df-ni 6926  df-nqqs 6970  df-ltnqqs 6975  df-inp 7088
This theorem is referenced by:  prarloclem3step  7118  addnqprlemfl  7181  addnqprlemfu  7182  mullocprlem  7192  mulnqprlemfl  7197  mulnqprlemfu  7198  ltsopr  7218  ltexprlemloc  7229  addcanprleml  7236  addcanprlemu  7237  recexprlemloc  7253  cauappcvgprlemladdru  7278  cauappcvgprlemladdrl  7279  caucvgprlemladdrl  7300
  Copyright terms: Public domain W3C validator