| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prloc | Unicode version | ||
| Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
| Ref | Expression |
|---|---|
| prloc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinp 7558 |
. . . 4
| |
| 2 | simpr3 1007 |
. . . 4
| |
| 3 | 1, 2 | sylbi 121 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | simpr 110 |
. 2
| |
| 6 | ltrelnq 7449 |
. . . . . . 7
| |
| 7 | 6 | brel 4716 |
. . . . . 6
|
| 8 | 7 | simpld 112 |
. . . . 5
|
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | simpr 110 |
. . . . . . 7
| |
| 11 | 10 | breq1d 4044 |
. . . . . 6
|
| 12 | 10 | eleq1d 2265 |
. . . . . . 7
|
| 13 | 12 | orbi1d 792 |
. . . . . 6
|
| 14 | 11, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | ralbidv 2497 |
. . . 4
|
| 16 | 9, 15 | rspcdv 2871 |
. . 3
|
| 17 | 7 | simprd 114 |
. . . . 5
|
| 18 | 17 | adantl 277 |
. . . 4
|
| 19 | simpr 110 |
. . . . . 6
| |
| 20 | 19 | breq2d 4046 |
. . . . 5
|
| 21 | 19 | eleq1d 2265 |
. . . . . 6
|
| 22 | 21 | orbi2d 791 |
. . . . 5
|
| 23 | 20, 22 | imbi12d 234 |
. . . 4
|
| 24 | 18, 23 | rspcdv 2871 |
. . 3
|
| 25 | 16, 24 | syld 45 |
. 2
|
| 26 | 4, 5, 25 | mp2d 47 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-ltnqqs 7437 df-inp 7550 |
| This theorem is referenced by: prarloclem3step 7580 addnqprlemfl 7643 addnqprlemfu 7644 mullocprlem 7654 mulnqprlemfl 7659 mulnqprlemfu 7660 ltsopr 7680 ltexprlemloc 7691 addcanprleml 7698 addcanprlemu 7699 recexprlemloc 7715 cauappcvgprlemladdru 7740 cauappcvgprlemladdrl 7741 caucvgprlemladdrl 7762 |
| Copyright terms: Public domain | W3C validator |