ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prloc Unicode version

Theorem prloc 7575
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
Assertion
Ref Expression
prloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A  e.  L  \/  B  e.  U ) )

Proof of Theorem prloc
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7558 . . . 4  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
2 simpr3 1007 . . . 4  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
31, 2sylbi 121 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  U )
) )
43adantr 276 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
5 simpr 110 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A  <Q  B )
6 ltrelnq 7449 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4716 . . . . . 6  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
87simpld 112 . . . . 5  |-  ( A 
<Q  B  ->  A  e. 
Q. )
98adantl 277 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  A  e.  Q. )
10 simpr 110 . . . . . . 7  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  q  =  A )
1110breq1d 4044 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
q  <Q  r  <->  A  <Q  r ) )
1210eleq1d 2265 . . . . . . 7  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
q  e.  L  <->  A  e.  L ) )
1312orbi1d 792 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  r  e.  U ) ) )
1411, 13imbi12d 234 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  (
( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
1514ralbidv 2497 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  q  =  A )  ->  ( A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  Q.  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
169, 15rspcdv 2871 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) )  ->  A. r  e.  Q.  ( A  <Q  r  -> 
( A  e.  L  \/  r  e.  U
) ) ) )
177simprd 114 . . . . 5  |-  ( A 
<Q  B  ->  B  e. 
Q. )
1817adantl 277 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  B  e.  Q. )
19 simpr 110 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  r  =  B )
2019breq2d 4046 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  ( A  <Q  r  <->  A  <Q  B ) )
2119eleq1d 2265 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
r  e.  U  <->  B  e.  U ) )
2221orbi2d 791 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
( A  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  B  e.  U ) ) )
2320, 22imbi12d 234 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  <Q  B )  /\  r  =  B )  ->  (
( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U
) )  <->  ( A  <Q  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
2418, 23rspcdv 2871 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. r  e.  Q.  ( A  <Q  r  ->  ( A  e.  L  \/  r  e.  U )
)  ->  ( A  <Q  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
2516, 24syld 45 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) )  -> 
( A  <Q  B  -> 
( A  e.  L  \/  B  e.  U
) ) ) )
264, 5, 25mp2d 47 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  <Q  B )  ->  ( A  e.  L  \/  B  e.  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   <.cop 3626   class class class wbr 4034   Q.cnq 7364    <Q cltq 7369   P.cnp 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-qs 6607  df-ni 7388  df-nqqs 7432  df-ltnqqs 7437  df-inp 7550
This theorem is referenced by:  prarloclem3step  7580  addnqprlemfl  7643  addnqprlemfu  7644  mullocprlem  7654  mulnqprlemfl  7659  mulnqprlemfu  7660  ltsopr  7680  ltexprlemloc  7691  addcanprleml  7698  addcanprlemu  7699  recexprlemloc  7715  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  caucvgprlemladdrl  7762
  Copyright terms: Public domain W3C validator