Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prloc | Unicode version |
Description: A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
Ref | Expression |
---|---|
prloc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 7377 | . . . 4 | |
2 | simpr3 990 | . . . 4 | |
3 | 1, 2 | sylbi 120 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | simpr 109 | . 2 | |
6 | ltrelnq 7268 | . . . . . . 7 | |
7 | 6 | brel 4635 | . . . . . 6 |
8 | 7 | simpld 111 | . . . . 5 |
9 | 8 | adantl 275 | . . . 4 |
10 | simpr 109 | . . . . . . 7 | |
11 | 10 | breq1d 3975 | . . . . . 6 |
12 | 10 | eleq1d 2226 | . . . . . . 7 |
13 | 12 | orbi1d 781 | . . . . . 6 |
14 | 11, 13 | imbi12d 233 | . . . . 5 |
15 | 14 | ralbidv 2457 | . . . 4 |
16 | 9, 15 | rspcdv 2819 | . . 3 |
17 | 7 | simprd 113 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | simpr 109 | . . . . . 6 | |
20 | 19 | breq2d 3977 | . . . . 5 |
21 | 19 | eleq1d 2226 | . . . . . 6 |
22 | 21 | orbi2d 780 | . . . . 5 |
23 | 20, 22 | imbi12d 233 | . . . 4 |
24 | 18, 23 | rspcdv 2819 | . . 3 |
25 | 16, 24 | syld 45 | . 2 |
26 | 4, 5, 25 | mp2d 47 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 cop 3563 class class class wbr 3965 cnq 7183 cltq 7188 cnp 7194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-qs 6479 df-ni 7207 df-nqqs 7251 df-ltnqqs 7256 df-inp 7369 |
This theorem is referenced by: prarloclem3step 7399 addnqprlemfl 7462 addnqprlemfu 7463 mullocprlem 7473 mulnqprlemfl 7478 mulnqprlemfu 7479 ltsopr 7499 ltexprlemloc 7510 addcanprleml 7517 addcanprlemu 7518 recexprlemloc 7534 cauappcvgprlemladdru 7559 cauappcvgprlemladdrl 7560 caucvgprlemladdrl 7581 |
Copyright terms: Public domain | W3C validator |