| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | GIF version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 42 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 5952 fisseneq 7064 exmidapne 7414 prloc 7646 axcaucvglemres 8054 seqf1oglem1 10708 seqf1oglem2 10709 wrdind 11220 wrd2ind 11221 bezoutlemmain 12485 coprm 12632 sqrt2irr 12650 oddprmdvds 12843 lmodfopnelem1 14253 xblss2ps 15043 xblss2 15044 perfectlem2 15639 lgsprme0 15686 pw1nct 16280 apdiff 16327 |
| Copyright terms: Public domain | W3C validator |