ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d GIF version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1 (𝜑𝜓)
mp2d.2 (𝜑𝜒)
mp2d.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mp2d (𝜑𝜃)

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2 (𝜑𝜓)
2 mp2d.2 . . 3 (𝜑𝜒)
3 mp2d.3 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
42, 3mpid 42 . 2 (𝜑 → (𝜓𝜃))
51, 4mpd 13 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  fisseneq  7004  exmidapne  7345  prloc  7577  axcaucvglemres  7985  seqf1oglem1  10630  seqf1oglem2  10631  bezoutlemmain  12192  coprm  12339  sqrt2irr  12357  oddprmdvds  12550  lmodfopnelem1  13958  xblss2ps  14726  xblss2  14727  perfectlem2  15322  lgsprme0  15369  pw1nct  15736  apdiff  15783
  Copyright terms: Public domain W3C validator