| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | GIF version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 42 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fisseneq 7004 exmidapne 7345 prloc 7577 axcaucvglemres 7985 seqf1oglem1 10630 seqf1oglem2 10631 bezoutlemmain 12192 coprm 12339 sqrt2irr 12357 oddprmdvds 12550 lmodfopnelem1 13958 xblss2ps 14726 xblss2 14727 perfectlem2 15322 lgsprme0 15369 pw1nct 15736 apdiff 15783 |
| Copyright terms: Public domain | W3C validator |