ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d GIF version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1 (𝜑𝜓)
mp2d.2 (𝜑𝜒)
mp2d.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mp2d (𝜑𝜃)

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2 (𝜑𝜓)
2 mp2d.2 . . 3 (𝜑𝜒)
3 mp2d.3 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
42, 3mpid 42 . 2 (𝜑 → (𝜓𝜃))
51, 4mpd 13 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  riotaeqimp  5985  fisseneq  7104  exmidapne  7454  prloc  7686  axcaucvglemres  8094  seqf1oglem1  10749  seqf1oglem2  10750  wrdind  11262  wrd2ind  11263  bezoutlemmain  12527  coprm  12674  sqrt2irr  12692  oddprmdvds  12885  lmodfopnelem1  14296  xblss2ps  15086  xblss2  15087  perfectlem2  15682  lgsprme0  15729  pw1nct  16398  apdiff  16446
  Copyright terms: Public domain W3C validator