ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mp2d GIF version

Theorem mp2d 47
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.)
Hypotheses
Ref Expression
mp2d.1 (𝜑𝜓)
mp2d.2 (𝜑𝜒)
mp2d.3 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
mp2d (𝜑𝜃)

Proof of Theorem mp2d
StepHypRef Expression
1 mp2d.1 . 2 (𝜑𝜓)
2 mp2d.2 . . 3 (𝜑𝜒)
3 mp2d.3 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
42, 3mpid 42 . 2 (𝜑 → (𝜓𝜃))
51, 4mpd 13 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  fisseneq  6909  prloc  7453  axcaucvglemres  7861  bezoutlemmain  11953  coprm  12098  sqrt2irr  12116  oddprmdvds  12306  xblss2ps  13198  xblss2  13199  lgsprme0  13737  pw1nct  14036  apdiff  14080
  Copyright terms: Public domain W3C validator