![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2d | GIF version |
Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2d.1 | ⊢ (𝜑 → 𝜓) |
mp2d.2 | ⊢ (𝜑 → 𝜒) |
mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
mp2d | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
4 | 2, 3 | mpid 42 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fisseneq 6990 exmidapne 7322 prloc 7553 axcaucvglemres 7961 seqf1oglem1 10593 seqf1oglem2 10594 bezoutlemmain 12138 coprm 12285 sqrt2irr 12303 oddprmdvds 12495 lmodfopnelem1 13823 xblss2ps 14583 xblss2 14584 lgsprme0 15199 pw1nct 15563 apdiff 15608 |
Copyright terms: Public domain | W3C validator |