| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2d | GIF version | ||
| Description: A double modus ponens deduction. (Contributed by NM, 23-May-2013.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2d.1 | ⊢ (𝜑 → 𝜓) |
| mp2d.2 | ⊢ (𝜑 → 𝜒) |
| mp2d.3 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| mp2d | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mp2d.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | mp2d.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 4 | 2, 3 | mpid 42 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 5 | 1, 4 | mpd 13 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: riotaeqimp 5985 fisseneq 7104 exmidapne 7454 prloc 7686 axcaucvglemres 8094 seqf1oglem1 10749 seqf1oglem2 10750 wrdind 11262 wrd2ind 11263 bezoutlemmain 12527 coprm 12674 sqrt2irr 12692 oddprmdvds 12885 lmodfopnelem1 14296 xblss2ps 15086 xblss2 15087 perfectlem2 15682 lgsprme0 15729 pw1nct 16398 apdiff 16446 |
| Copyright terms: Public domain | W3C validator |