| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq123dva | Unicode version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 |
|
| mpoeq123dva.2 |
|
| mpoeq123dva.3 |
|
| Ref | Expression |
|---|---|
| mpoeq123dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dva.3 |
. . . . . 6
| |
| 2 | 1 | eqeq2d 2208 |
. . . . 5
|
| 3 | 2 | pm5.32da 452 |
. . . 4
|
| 4 | mpoeq123dva.2 |
. . . . . . . 8
| |
| 5 | 4 | eleq2d 2266 |
. . . . . . 7
|
| 6 | 5 | pm5.32da 452 |
. . . . . 6
|
| 7 | mpoeq123dv.1 |
. . . . . . . 8
| |
| 8 | 7 | eleq2d 2266 |
. . . . . . 7
|
| 9 | 8 | anbi1d 465 |
. . . . . 6
|
| 10 | 6, 9 | bitrd 188 |
. . . . 5
|
| 11 | 10 | anbi1d 465 |
. . . 4
|
| 12 | 3, 11 | bitrd 188 |
. . 3
|
| 13 | 12 | oprabbidv 5980 |
. 2
|
| 14 | df-mpo 5930 |
. 2
| |
| 15 | df-mpo 5930 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: mpoeq123dv 5988 |
| Copyright terms: Public domain | W3C validator |