ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123dva Unicode version

Theorem mpoeq123dva 5832
Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
mpoeq123dv.1  |-  ( ph  ->  A  =  D )
mpoeq123dva.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  E )
mpoeq123dva.3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  F )
Assertion
Ref Expression
mpoeq123dva  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    D( x, y)    E( x, y)    F( x, y)

Proof of Theorem mpoeq123dva
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mpoeq123dva.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  C  =  F )
21eqeq2d 2151 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( z  =  C  <-> 
z  =  F ) )
32pm5.32da 447 . . . 4  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  F
) ) )
4 mpoeq123dva.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  =  E )
54eleq2d 2209 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  B  <->  y  e.  E ) )
65pm5.32da 447 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( x  e.  A  /\  y  e.  E ) ) )
7 mpoeq123dv.1 . . . . . . . 8  |-  ( ph  ->  A  =  D )
87eleq2d 2209 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  <->  x  e.  D ) )
98anbi1d 460 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  E )  <->  ( x  e.  D  /\  y  e.  E ) ) )
106, 9bitrd 187 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  <->  ( x  e.  D  /\  y  e.  E ) ) )
1110anbi1d 460 . . . 4  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  F )  <->  ( (
x  e.  D  /\  y  e.  E )  /\  z  =  F
) ) )
123, 11bitrd 187 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  D  /\  y  e.  E )  /\  z  =  F
) ) )
1312oprabbidv 5825 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  D  /\  y  e.  E )  /\  z  =  F ) } )
14 df-mpo 5779 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
15 df-mpo 5779 . 2  |-  ( x  e.  D ,  y  e.  E  |->  F )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  D  /\  y  e.  E )  /\  z  =  F
) }
1613, 14, 153eqtr4g 2197 1  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {coprab 5775    e. cmpo 5776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-oprab 5778  df-mpo 5779
This theorem is referenced by:  mpoeq123dv  5833
  Copyright terms: Public domain W3C validator