| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoeq123dva | Unicode version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 |
|
| mpoeq123dva.2 |
|
| mpoeq123dva.3 |
|
| Ref | Expression |
|---|---|
| mpoeq123dva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dva.3 |
. . . . . 6
| |
| 2 | 1 | eqeq2d 2241 |
. . . . 5
|
| 3 | 2 | pm5.32da 452 |
. . . 4
|
| 4 | mpoeq123dva.2 |
. . . . . . . 8
| |
| 5 | 4 | eleq2d 2299 |
. . . . . . 7
|
| 6 | 5 | pm5.32da 452 |
. . . . . 6
|
| 7 | mpoeq123dv.1 |
. . . . . . . 8
| |
| 8 | 7 | eleq2d 2299 |
. . . . . . 7
|
| 9 | 8 | anbi1d 465 |
. . . . . 6
|
| 10 | 6, 9 | bitrd 188 |
. . . . 5
|
| 11 | 10 | anbi1d 465 |
. . . 4
|
| 12 | 3, 11 | bitrd 188 |
. . 3
|
| 13 | 12 | oprabbidv 6058 |
. 2
|
| 14 | df-mpo 6006 |
. 2
| |
| 15 | df-mpo 6006 |
. 2
| |
| 16 | 13, 14, 15 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-oprab 6005 df-mpo 6006 |
| This theorem is referenced by: mpoeq123dv 6066 |
| Copyright terms: Public domain | W3C validator |