ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq12 Unicode version

Theorem mpoeq12 5937
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpoeq12  |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y
Allowed substitution hints:    E( x, y)

Proof of Theorem mpoeq12
StepHypRef Expression
1 eqid 2177 . . . . 5  |-  E  =  E
21rgenw 2532 . . . 4  |-  A. y  e.  B  E  =  E
32jctr 315 . . 3  |-  ( B  =  D  ->  ( B  =  D  /\  A. y  e.  B  E  =  E ) )
43ralrimivw 2551 . 2  |-  ( B  =  D  ->  A. x  e.  A  ( B  =  D  /\  A. y  e.  B  E  =  E ) )
5 mpoeq123 5936 . 2  |-  ( ( A  =  C  /\  A. x  e.  A  ( B  =  D  /\  A. y  e.  B  E  =  E ) )  -> 
( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
64, 5sylan2 286 1  |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   A.wral 2455    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  seqeq1  10450  xpsval  12776  grpsubpropd2  12980  txvalex  13839  txval  13840
  Copyright terms: Public domain W3C validator