ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq12 Unicode version

Theorem mpoeq12 5950
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Assertion
Ref Expression
mpoeq12  |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y
Allowed substitution hints:    E( x, y)

Proof of Theorem mpoeq12
StepHypRef Expression
1 eqid 2188 . . . . 5  |-  E  =  E
21rgenw 2544 . . . 4  |-  A. y  e.  B  E  =  E
32jctr 315 . . 3  |-  ( B  =  D  ->  ( B  =  D  /\  A. y  e.  B  E  =  E ) )
43ralrimivw 2563 . 2  |-  ( B  =  D  ->  A. x  e.  A  ( B  =  D  /\  A. y  e.  B  E  =  E ) )
5 mpoeq123 5949 . 2  |-  ( ( A  =  C  /\  A. x  e.  A  ( B  =  D  /\  A. y  e.  B  E  =  E ) )  -> 
( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
64, 5sylan2 286 1  |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   A.wral 2467    e. cmpo 5892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-oprab 5894  df-mpo 5895
This theorem is referenced by:  seqeq1  10465  xpsval  12793  grpsubpropd2  13014  txvalex  14137  txval  14138
  Copyright terms: Public domain W3C validator