| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 |
|
| Ref | Expression |
|---|---|
| pm5.32da |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm5.32d 450 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2500 reubida 2687 rmobida 2692 mpteq12f 4123 reuhypd 4517 funbrfv2b 5622 dffn5im 5623 eqfnfv2 5677 fndmin 5686 fniniseg 5699 rexsupp 5703 fmptco 5745 dff13 5836 riotabidva 5915 mpoeq123dva 6005 mpoeq3dva 6008 mpoxopovel 6326 qliftfun 6703 erovlem 6713 xpcomco 6920 pw2f1odclem 6930 elfi2 7073 ctssdccl 7212 ltexpi 7449 dfplpq2 7466 axprecex 7992 zrevaddcl 9422 qrevaddcl 9764 icoshft 10111 fznn 10210 shftdm 11104 2shfti 11113 sumeq2 11641 fsum3 11669 fsum2dlemstep 11716 prodeq2 11839 fprodseq 11865 bitsmod 12238 bitscmp 12240 gcdaddm 12276 grpidpropdg 13177 ismgmid 13180 gsumpropd2 13196 mhmpropd 13269 issubm2 13276 eqgid 13533 eqgabl 13637 rngpropd 13688 iscrng2 13748 ringpropd 13771 crngpropd 13772 crngunit 13844 dvdsrpropdg 13880 issubrg3 13980 lsslss 14114 lsspropdg 14164 znleval 14386 bastop2 14527 restopn2 14626 iscnp3 14646 lmbr2 14657 txlm 14722 ismet2 14797 xblpnfps 14841 xblpnf 14842 blininf 14867 blres 14877 elmopn2 14892 neibl 14934 metrest 14949 metcnp3 14954 metcnp 14955 metcnp2 14956 metcn 14957 txmetcn 14962 cnbl0 14977 cnblcld 14978 bl2ioo 14993 elcncf2 15017 cncfmet 15035 cnlimc 15115 lgsquadlem1 15525 lgsquadlem2 15526 2lgslem1a 15536 |
| Copyright terms: Public domain | W3C validator |