Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
Ref | Expression |
---|---|
pm5.32da.1 |
Ref | Expression |
---|---|
pm5.32da |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32da.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | pm5.32d 446 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: rexbida 2461 reubida 2647 rmobida 2652 mpteq12f 4062 reuhypd 4449 funbrfv2b 5531 dffn5im 5532 eqfnfv2 5584 fndmin 5592 fniniseg 5605 rexsupp 5609 fmptco 5651 dff13 5736 riotabidva 5814 mpoeq123dva 5903 mpoeq3dva 5906 mpoxopovel 6209 qliftfun 6583 erovlem 6593 xpcomco 6792 elfi2 6937 ctssdccl 7076 ltexpi 7278 dfplpq2 7295 axprecex 7821 zrevaddcl 9241 qrevaddcl 9582 icoshft 9926 fznn 10024 shftdm 10764 2shfti 10773 sumeq2 11300 fsum3 11328 fsum2dlemstep 11375 prodeq2 11498 fprodseq 11524 gcdaddm 11917 grpidpropdg 12605 ismgmid 12608 bastop2 12724 restopn2 12823 iscnp3 12843 lmbr2 12854 txlm 12919 ismet2 12994 xblpnfps 13038 xblpnf 13039 blininf 13064 blres 13074 elmopn2 13089 neibl 13131 metrest 13146 metcnp3 13151 metcnp 13152 metcnp2 13153 metcn 13154 txmetcn 13159 cnbl0 13174 cnblcld 13175 bl2ioo 13182 elcncf2 13201 cncfmet 13219 cnlimc 13281 |
Copyright terms: Public domain | W3C validator |