![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
Ref | Expression |
---|---|
pm5.32da.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.32da |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32da.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32d 450 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexbida 2489 reubida 2676 rmobida 2681 mpteq12f 4110 reuhypd 4503 funbrfv2b 5602 dffn5im 5603 eqfnfv2 5657 fndmin 5666 fniniseg 5679 rexsupp 5683 fmptco 5725 dff13 5812 riotabidva 5891 mpoeq123dva 5980 mpoeq3dva 5983 mpoxopovel 6296 qliftfun 6673 erovlem 6683 xpcomco 6882 pw2f1odclem 6892 elfi2 7033 ctssdccl 7172 ltexpi 7399 dfplpq2 7416 axprecex 7942 zrevaddcl 9370 qrevaddcl 9712 icoshft 10059 fznn 10158 shftdm 10969 2shfti 10978 sumeq2 11505 fsum3 11533 fsum2dlemstep 11580 prodeq2 11703 fprodseq 11729 gcdaddm 12124 grpidpropdg 12960 ismgmid 12963 gsumpropd2 12979 mhmpropd 13041 issubm2 13048 eqgid 13299 eqgabl 13403 rngpropd 13454 iscrng2 13514 ringpropd 13537 crngpropd 13538 crngunit 13610 dvdsrpropdg 13646 issubrg3 13746 lsslss 13880 lsspropdg 13930 znleval 14152 bastop2 14263 restopn2 14362 iscnp3 14382 lmbr2 14393 txlm 14458 ismet2 14533 xblpnfps 14577 xblpnf 14578 blininf 14603 blres 14613 elmopn2 14628 neibl 14670 metrest 14685 metcnp3 14690 metcnp 14691 metcnp2 14692 metcn 14693 txmetcn 14698 cnbl0 14713 cnblcld 14714 bl2ioo 14729 elcncf2 14753 cncfmet 14771 cnlimc 14851 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |