![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
Ref | Expression |
---|---|
pm5.32da.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.32da |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32da.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32d 450 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexbida 2470 reubida 2656 rmobida 2661 mpteq12f 4078 reuhypd 4465 funbrfv2b 5552 dffn5im 5553 eqfnfv2 5606 fndmin 5615 fniniseg 5628 rexsupp 5632 fmptco 5674 dff13 5759 riotabidva 5837 mpoeq123dva 5926 mpoeq3dva 5929 mpoxopovel 6232 qliftfun 6607 erovlem 6617 xpcomco 6816 elfi2 6961 ctssdccl 7100 ltexpi 7311 dfplpq2 7328 axprecex 7854 zrevaddcl 9274 qrevaddcl 9615 icoshft 9959 fznn 10057 shftdm 10797 2shfti 10806 sumeq2 11333 fsum3 11361 fsum2dlemstep 11408 prodeq2 11531 fprodseq 11557 gcdaddm 11950 grpidpropdg 12657 ismgmid 12660 mhmpropd 12718 iscrng2 12993 ringpropd 13011 crngpropd 13012 bastop2 13153 restopn2 13252 iscnp3 13272 lmbr2 13283 txlm 13348 ismet2 13423 xblpnfps 13467 xblpnf 13468 blininf 13493 blres 13503 elmopn2 13518 neibl 13560 metrest 13575 metcnp3 13580 metcnp 13581 metcnp2 13582 metcn 13583 txmetcn 13588 cnbl0 13603 cnblcld 13604 bl2ioo 13611 elcncf2 13630 cncfmet 13648 cnlimc 13710 |
Copyright terms: Public domain | W3C validator |