| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 |
|
| Ref | Expression |
|---|---|
| pm5.32da |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm5.32d 450 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2503 reubida 2690 rmobida 2696 mpteq12f 4140 reuhypd 4536 funbrfv2b 5646 dffn5im 5647 eqfnfv2 5701 fndmin 5710 fniniseg 5723 rexsupp 5727 fmptco 5769 dff13 5860 riotabidva 5939 mpoeq123dva 6029 mpoeq3dva 6032 mpoxopovel 6350 qliftfun 6727 erovlem 6737 xpcomco 6946 pw2f1odclem 6956 elfi2 7100 ctssdccl 7239 ltexpi 7485 dfplpq2 7502 axprecex 8028 zrevaddcl 9458 qrevaddcl 9800 icoshft 10147 fznn 10246 pfxeq 11187 pfxsuffeqwrdeq 11189 pfxsuff1eqwrdeq 11190 shftdm 11248 2shfti 11257 sumeq2 11785 fsum3 11813 fsum2dlemstep 11860 prodeq2 11983 fprodseq 12009 bitsmod 12382 bitscmp 12384 gcdaddm 12420 grpidpropdg 13321 ismgmid 13324 gsumpropd2 13340 mhmpropd 13413 issubm2 13420 eqgid 13677 eqgabl 13781 rngpropd 13832 iscrng2 13892 ringpropd 13915 crngpropd 13916 crngunit 13988 dvdsrpropdg 14024 issubrg3 14124 lsslss 14258 lsspropdg 14308 znleval 14530 bastop2 14671 restopn2 14770 iscnp3 14790 lmbr2 14801 txlm 14866 ismet2 14941 xblpnfps 14985 xblpnf 14986 blininf 15011 blres 15021 elmopn2 15036 neibl 15078 metrest 15093 metcnp3 15098 metcnp 15099 metcnp2 15100 metcn 15101 txmetcn 15106 cnbl0 15121 cnblcld 15122 bl2ioo 15137 elcncf2 15161 cncfmet 15179 cnlimc 15259 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1a 15680 |
| Copyright terms: Public domain | W3C validator |