| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 |
|
| Ref | Expression |
|---|---|
| pm5.32da |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm5.32d 450 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2492 reubida 2679 rmobida 2684 mpteq12f 4113 reuhypd 4506 funbrfv2b 5605 dffn5im 5606 eqfnfv2 5660 fndmin 5669 fniniseg 5682 rexsupp 5686 fmptco 5728 dff13 5815 riotabidva 5894 mpoeq123dva 5983 mpoeq3dva 5986 mpoxopovel 6299 qliftfun 6676 erovlem 6686 xpcomco 6885 pw2f1odclem 6895 elfi2 7038 ctssdccl 7177 ltexpi 7404 dfplpq2 7421 axprecex 7947 zrevaddcl 9376 qrevaddcl 9718 icoshft 10065 fznn 10164 shftdm 10987 2shfti 10996 sumeq2 11524 fsum3 11552 fsum2dlemstep 11599 prodeq2 11722 fprodseq 11748 gcdaddm 12151 grpidpropdg 13017 ismgmid 13020 gsumpropd2 13036 mhmpropd 13098 issubm2 13105 eqgid 13356 eqgabl 13460 rngpropd 13511 iscrng2 13571 ringpropd 13594 crngpropd 13595 crngunit 13667 dvdsrpropdg 13703 issubrg3 13803 lsslss 13937 lsspropdg 13987 znleval 14209 bastop2 14320 restopn2 14419 iscnp3 14439 lmbr2 14450 txlm 14515 ismet2 14590 xblpnfps 14634 xblpnf 14635 blininf 14660 blres 14670 elmopn2 14685 neibl 14727 metrest 14742 metcnp3 14747 metcnp 14748 metcnp2 14749 metcn 14750 txmetcn 14755 cnbl0 14770 cnblcld 14771 bl2ioo 14786 elcncf2 14810 cncfmet 14828 cnlimc 14908 lgsquadlem1 15318 lgsquadlem2 15319 2lgslem1a 15329 |
| Copyright terms: Public domain | W3C validator |