| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 |
|
| Ref | Expression |
|---|---|
| pm5.32da |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm5.32d 450 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2525 reubida 2713 rmobida 2719 mpteq12f 4163 reuhypd 4561 funbrfv2b 5677 dffn5im 5678 eqfnfv2 5732 fndmin 5741 fniniseg 5754 rexsupp 5758 fmptco 5800 dff13 5891 riotabidva 5971 mpoeq123dva 6064 mpoeq3dva 6067 mpoxopovel 6385 qliftfun 6762 erovlem 6772 xpcomco 6981 pw2f1odclem 6991 elfi2 7135 ctssdccl 7274 ltexpi 7520 dfplpq2 7537 axprecex 8063 zrevaddcl 9493 qrevaddcl 9835 icoshft 10182 fznn 10281 pfxeq 11223 pfxsuffeqwrdeq 11225 pfxsuff1eqwrdeq 11226 shftdm 11328 2shfti 11337 sumeq2 11865 fsum3 11893 fsum2dlemstep 11940 prodeq2 12063 fprodseq 12089 bitsmod 12462 bitscmp 12464 gcdaddm 12500 grpidpropdg 13402 ismgmid 13405 gsumpropd2 13421 mhmpropd 13494 issubm2 13501 eqgid 13758 eqgabl 13862 rngpropd 13913 iscrng2 13973 ringpropd 13996 crngpropd 13997 crngunit 14069 dvdsrpropdg 14105 issubrg3 14205 lsslss 14339 lsspropdg 14389 znleval 14611 bastop2 14752 restopn2 14851 iscnp3 14871 lmbr2 14882 txlm 14947 ismet2 15022 xblpnfps 15066 xblpnf 15067 blininf 15092 blres 15102 elmopn2 15117 neibl 15159 metrest 15174 metcnp3 15179 metcnp 15180 metcnp2 15181 metcn 15182 txmetcn 15187 cnbl0 15202 cnblcld 15203 bl2ioo 15218 elcncf2 15242 cncfmet 15260 cnlimc 15340 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1a 15761 |
| Copyright terms: Public domain | W3C validator |