![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32da | Unicode version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
Ref | Expression |
---|---|
pm5.32da.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.32da |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32da.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32d 450 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: rexbida 2489 reubida 2676 rmobida 2681 mpteq12f 4109 reuhypd 4502 funbrfv2b 5601 dffn5im 5602 eqfnfv2 5656 fndmin 5665 fniniseg 5678 rexsupp 5682 fmptco 5724 dff13 5811 riotabidva 5890 mpoeq123dva 5979 mpoeq3dva 5982 mpoxopovel 6294 qliftfun 6671 erovlem 6681 xpcomco 6880 pw2f1odclem 6890 elfi2 7031 ctssdccl 7170 ltexpi 7397 dfplpq2 7414 axprecex 7940 zrevaddcl 9367 qrevaddcl 9709 icoshft 10056 fznn 10155 shftdm 10966 2shfti 10975 sumeq2 11502 fsum3 11530 fsum2dlemstep 11577 prodeq2 11700 fprodseq 11726 gcdaddm 12121 grpidpropdg 12957 ismgmid 12960 gsumpropd2 12976 mhmpropd 13038 issubm2 13045 eqgid 13296 eqgabl 13400 rngpropd 13451 iscrng2 13511 ringpropd 13534 crngpropd 13535 crngunit 13607 dvdsrpropdg 13643 issubrg3 13743 lsslss 13877 lsspropdg 13927 znleval 14141 bastop2 14252 restopn2 14351 iscnp3 14371 lmbr2 14382 txlm 14447 ismet2 14522 xblpnfps 14566 xblpnf 14567 blininf 14592 blres 14602 elmopn2 14617 neibl 14659 metrest 14674 metcnp3 14679 metcnp 14680 metcnp2 14681 metcn 14682 txmetcn 14687 cnbl0 14702 cnblcld 14703 bl2ioo 14710 elcncf2 14729 cncfmet 14747 cnlimc 14826 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |