| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) |
| Ref | Expression |
|---|---|
| oprabbidv.1 |
|
| Ref | Expression |
|---|---|
| oprabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 |
. 2
| |
| 2 | nfv 1550 |
. 2
| |
| 3 | nfv 1550 |
. 2
| |
| 4 | oprabbidv.1 |
. 2
| |
| 5 | 1, 2, 3, 4 | oprabbid 5997 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-oprab 5947 |
| This theorem is referenced by: oprabbii 5999 mpoeq123dva 6005 mpoeq3dva 6008 resoprab2 6041 erovlem 6713 |
| Copyright terms: Public domain | W3C validator |