Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 5825
 Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1
Assertion
Ref Expression
oprabbidv
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1508 . 2
2 nfv 1508 . 2
3 nfv 1508 . 2
4 oprabbidv.1 . 2
51, 2, 3, 4oprabbid 5824 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331  coprab 5775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-oprab 5778 This theorem is referenced by:  oprabbii  5826  mpoeq123dva  5832  mpoeq3dva  5835  resoprab2  5868  erovlem  6521
 Copyright terms: Public domain W3C validator