ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 5972
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
oprabbidv  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Distinct variable groups:    x, z, ph    y, z, ph
Allowed substitution hints:    ps( x, y, z)    ch( x, y, z)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1539 . 2  |-  F/ x ph
2 nfv 1539 . 2  |-  F/ y
ph
3 nfv 1539 . 2  |-  F/ z
ph
4 oprabbidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
51, 2, 3, 4oprabbid 5971 1  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   {coprab 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-oprab 5922
This theorem is referenced by:  oprabbii  5973  mpoeq123dva  5979  mpoeq3dva  5982  resoprab2  6015  erovlem  6681
  Copyright terms: Public domain W3C validator