ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 5929
Description: Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
oprabbidv  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Distinct variable groups:    x, z, ph    y, z, ph
Allowed substitution hints:    ps( x, y, z)    ch( x, y, z)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
2 nfv 1528 . 2  |-  F/ y
ph
3 nfv 1528 . 2  |-  F/ z
ph
4 oprabbidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
51, 2, 3, 4oprabbid 5928 1  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   {coprab 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-oprab 5879
This theorem is referenced by:  oprabbii  5930  mpoeq123dva  5936  mpoeq3dva  5939  resoprab2  5972  erovlem  6627
  Copyright terms: Public domain W3C validator